

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

Monofony Documentation

[image: Monofony Welcome Page]
Monofony [https://twitter.com/hashtag/Monofony] is a project based on
Symfony Framework [http://symfony.com] and Sylius [https://sylius.com].

Note

This documentation assumes you have a working knowledge of the Symfony
Framework. If you’re not familiar with Symfony, please start with
reading the Quick Tour [http://symfony.com/doc/current/quick_tour] from the Symfony documentation.

The Book

Here you will find all the concepts used in the Monofony platform.
The Book helps to understand how Monofony works.

	Architecture

	Fixtures

	Users

	AdminUser

	Customer and AppUser

The Cookbook

The Cookbook is a collection of specific solutions for specific needs.

Deployment

The Deployment guide helps to deploy the website on servers.

	Deployment

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

The Book

Here you will find all the concepts used in Monofony.
The Books helps to understand how Monofony works.

Architecture

The key to understanding principles of Sylius internal organization. Here you will learn about the Resource layer,
state machines, events and general non e-commerce concepts adopted in the platform, like E-mails or Fixtures.

	Architecture Overview

	Fixtures

Users

This chapter will tell you more about the way Sylius handles users, customers and admins.

	AdminUser

	Customer and AppUser

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

Architecture

Note

This section is based on the great Sylius documentation [https://docs.sylius.com].

Before we dive separately into every Monofony concept, you need to have an overview of how our main application is structured.
In this chapter we will sketch this architecture and our basic, cornerstone concepts, but also some supportive approaches,
that you need to notice.

	Architecture Overview

	Fixtures

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

Architecture Overview

Before we dive separately into every Monofony concept, you need to have an overview of how our main application is structured.

Fullstack Symfony

[image: ../../_images/symfonyfs.png]
Monofony is based on Symfony, which is a leading PHP framework to create web applications. Using Symfony allows
developers to work better and faster by providing them with certainty of developing an application that is fully compatible
with the business rules, that is structured, maintainable and upgradable, but also it allows to save time by providing generic re-usable modules.

Learn more about Symfony [http://symfony.com/what-is-symfony].

Doctrine

[image: ../../_images/doctrine.png]
Doctrine is a family of PHP libraries focused on providing data persistence layer.
The most important are the object-relational mapper (ORM) and the database abstraction layer (DBAL).
One of Doctrine’s key features is the possibility to write database queries in Doctrine Query Language (DQL) - an object-oriented dialect of SQL.

To learn more about Doctrine - see their documentation [http://www.doctrine-project.org/about.html].

Twig

[image: ../../_images/twig.png]
Twig is a modern template engine for PHP that is really fast, secure and flexible. Twig is being used by Symfony.

To read more about Twig, go here [http://twig.sensiolabs.org/].

Third Party Libraries

Monofony uses a lot of libraries for various tasks:

	Sylius [https://docs.sylius.com/en/latest/] for routing, controllers, data fixtures, grids

	KnpMenu [http://symfony.com/doc/current/bundles/KnpMenuBundle/index.html] - for backend menus

	Imagine [https://github.com/liip/LiipImagineBundle] for images processing, generating thumbnails and cropping

	Pagerfanta [https://github.com/whiteoctober/Pagerfanta] for pagination

	Winzou State Machine [https://github.com/winzou/StateMachineBundle] - for the state machines handling

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

Fixtures

Fixtures are used mainly for testing, but also for having your website in a certain state, having defined data
- they ensure that there is a fixed environment in which your application is working.

Note

The way Fixtures are designed in Monofony is well described in the FixturesBundle documentation [https://github.com/Sylius/SyliusFixturesBundle/blob/master/docs/index.md].

What are the available fixtures in Monofony?

To check what fixtures are defined in Monofony run:

$ php bin/console sylius:fixtures:list

How to load Monofony fixtures?

The recommended way to load the predefined set of Monofony fixtures is here:

$ php bin/console sylius:fixtures:load

What data is loaded by fixtures in Monofony?

All files that serve for loading fixtures of Monofony are placed in the App/Fixture/* directory.

And the specified data for fixtures is stored in the
config/packages/sylius_fixtures.yaml file.

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

Users

Before we dive separately into every Monofony concept, you need to have an overview of how our main application is structured.
In this chapter we will sketch this architecture and our basic, cornerstone concepts, but also some supportive approaches,
that you need to notice.

	AdminUser

	Customer and AppUser

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

AdminUser

The AdminUser entity extends the User entity. It is created to enable administrator accounts that have access to the administration panel.

How to create an AdminUser programmatically?

The AdminUser is created just like every other entity, it has its own factory. By default it will have an administration role assigned.

/** @var AdminUserInterface $admin */
$admin = $this->container->get('sylius.factory.admin_user')->createNew();

$admin->setEmail('administrator@test.com');
$admin->setPlainPassword('pswd');

$this->container->get('sylius.repository.admin_user')->add($admin);

Administration Security

In Monofony by default you have got the administration panel routes (/admin/*) secured by a firewall - its configuration
can be found in the config/packages/security.yaml file.

Only the logged in AdminUsers are eligible to enter these routes.

Learn more

Note

To learn more, read the UserBundle documentation [https://docs.sylius.com/en/latest/components_and_bundles/bundles/SyliusUserBundle/index.html].

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

Customer and AppUser

For handling customers of your system AppUser is using a combination of two entities - Customer and AppUser.
The difference between these two entities is simple: the Customer is a guest on your application and the AppUser is a user registered in the system - they have an account.

Customer

The Customer entity was created to collect data about non-registered guests of the system - ones that has been buying without having an account or that have somehow provided us their e-mail.

How to create a Customer programmatically?

As usually, use a factory. The only required field for the Customer entity is email, provide it before adding it to the repository.

/** @var CustomerInterface $customer */
$customer = $this->container->get('sylius.factory.customer')->createNew();

$customer->setEmail('customer@test.com');

$this->container->get('sylius.repository.customer')->add($customer);

The Customer entity can of course hold other information besides an email, it can be for instance billingAddress and shippingAddress, firstName, lastName or birthday.

Note

The relation between the Customer and AppUser is bidirectional. Both entities hold a reference to each other.

AppUser

AppUser entity is designed for customers that have registered in the system - they have an account with both e-mail and password. They can visit and modify their account.

While creating new account the existence of the provided email in the system is checked - if the email was present - it will already have a Customer therefore the existing one will be assigned to the newly created AppUser, if not - a new Customer will be created together with the AppUser.

How to create an AppUser programmatically?

Assuming that you have a Customer (either retrieved from the repository or a newly created one) - use a factory to create a new AppUser, assign the existing Customer and a password via the setPlainPassword() method.

/** @var ShopUserInterface $user */
$user = $this->container->get('sylius.factory.app_user')->createNew();

// Now let's find a Customer by their e-mail:
/** @var CustomerInterface $customer */
$customer = $this->container->get('sylius.repository.customer')->findOneBy(['email' => 'customer@test.com']);

// and assign it to the ShopUser
$user->setCustomer($customer);
$user->setPlainPassword('pswd');

$this->container->get('sylius.repository.app_user')->add($user);

Changing the AppUser password

The already set password of an AppUser can be easily changed via the setPlainPassword() method.

$user->getPassword(); // returns encrypted password - 'pswd'

$user->setPlainPassword('resu1');
// the password will now be 'resu1' and will become encrypted while saving the user in the database

Customer related events

	Event id

	Description

	sylius.customer.post_register

	dispatched when a new Customer is registered

	sylius.customer.pre_update

	dispatched when a Customer is updated

	sylius.oauth_user.post_create

	dispatched when an OAuthUser is created

	sylius.oauth_user.post_update

	dispatched when an OAuthUser is updated

	sylius.app_user.post_create

	dispatched when a User is created

	sylius.app_user.post_update

	dispatched when a User is updated

	sylius.app_user.pre_delete

	dispatched before a User is deleted

	sylius.user.email_verification.token

	dispatched when a verification token is requested

	sylius.user.password_reset.request.token

	dispatched when a reset password token is requested

	sylius.user.pre_password_change

	dispatched before user password is changed

	sylius.user.pre_password_reset

	dispatched before user password is reset

	sylius.user.security.implicit_login

	dispatched when an implicit login is done

	security.interactive_login

	dispatched when an interactive login is done

Learn more:

Note

To learn more read:
* the SyliusUserBundle documentation [https://docs.sylius.com/en/latest/components_and_bundles/bundles/SyliusUserBundle/index.html].
* the SyliusCustomerBundle documentation [https://docs.sylius.com/en/latest/components_and_bundles/bundles/SyliusCustomerBundle/index.html].

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

The Cookbook

Entities

	How to configure your first resource

	How to manage your new entity on the admin panel

	How to configure backend routes

	How to configure backend menu

Fixtures

	How to configure a fixture factory

	How to configure your fixture options

	How to use it on your suite

	How to load your data fixtures

BDD

	How to use Phpspec to design your code

	How to use Behat to design your features

Dashboard

	How to create your own statistics

	Basic example

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

How to configure your first resource

As an example we will take an Article entity.

namespace App\Entity;

use Doctrine\ORM\Mapping as ORM;
use Sylius\Component\Resource\Model\ResourceInterface;
use Symfony\Component\Validator\Constraints as Assert;

/**
 * @ORM\Entity
 * @ORM\Table(name="app_article")
 */
class Article implements ResourceInterface
{
 use IdentifiableTrait;

 /**
 * @var string|null
 *
 * @ORM\Column(type="string")
 *
 * @Assert\NotBlank()
 */
 private $title;

 /**
 * @return string|null
 */
 public function getTitle(): ?string
 {
 return $this->title;
 }

 /**
 * @param string|null $title
 */
 public function setTitle(?string $title): void
 {
 $this->title = $title;
 }
}

If you don’t add a form type, it uses a default form type [https://github.com/Sylius/SyliusResourceBundle/blob/master/src/Bundle/Form/Type/DefaultResourceType.php]. But it is a good practice to have one.

// src/Form/Type/ArticleType.php

namespace App\Form\Type;

use App\Entity\Article;
use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\Extension\Core\Type\TextType;
use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\OptionsResolver\OptionsResolver;

class ArticleType extends AbstractType
{
 /**
 * {@inheritdoc}
 */
 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 parent::buildForm($builder, $options);
 $builder
 ->add('title', TextType::class, [
 'label' => 'sylius.ui.title',
]);
 }

 /**
 * {@inheritdoc}
 */
 public function getBlockPrefix(): string
 {
 return 'app_article';
 }

 /**
 * {@inheritdoc}
 */
 public function configureOptions(OptionsResolver $resolver): void
 {
 $resolver->setDefaults([
 'data_class' => Article::class
]);
 }
}

You now have to add it on Sylius Resource configuration.

config/sylius/resources.yaml

sylius_resource:
 resources:
 app.article:
 classes:
 model: App\Entity\Article
 form: App\Form\Type\ArticleType

Warning

Don’t forget to synchronize your database using Doctrine Migrations.

You can use these two commands to generate and synchronize your database.

$ bin/console doctrine:migrations:diff
$ bin/console doctrine:migrations:migrate

Learn More

	Sylius Resource Bundle [https://github.com/Sylius/SyliusResourceBundle/blob/master/docs/index.md] documentation

	Doctrine migrations [https://symfony.com/doc/master/bundles/DoctrineMigrationsBundle/index.html] documentation

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

How to manage your new entity on the admin panel

To add a new grid, create a new grid configuration file in config/packages/grids/backend/ and import this to sylius_grid configuration file

Create a new grid configuration file

config/sylius/grids/backend/article.yaml

sylius_grid:
 grids:
 app_backend_article:
 driver:
 name: doctrine/orm
 options:
 class: "%app.model.article.class%"
 sorting:
 title: asc
 fields:
 title:
 type: string
 label: sylius.ui.title
 sortable: null
 filters:
 search:
 type: string
 label: sylius.ui.search
 options:
 fields: [title]
 actions:
 main:
 create:
 type: create
 item:
 update:
 type: update
 delete:
 type: delete

Warning

You need to clear the Symfony cache when creating a new sylius grid configuration file.

Manually importing you sylius_grid configuration (optional)

Grids configuration files are automatically detected when clearing the cache.
You can manually add them if you prefer.

config/sylius/grids.yaml

imports:
 - { resource: 'grids/backend/article.yaml' }
 - { resource: 'grids/backend/admin_user.yaml' }
 - { resource: 'grids/backend/customer.yaml' }

Learn More

	Configuring grid in sylius documentation [https://github.com/Sylius/SyliusGridBundle/blob/master/docs/index.md]

	The whole configuration reference in sylius documentation [https://github.com/Sylius/SyliusGridBundle/blob/master/docs/configuration.md]

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

How to configure backend routes

To configure backend routes for your entity, you have to create a new file on backend routes folder config/routes/backend.

Let’s configure our “Article” routes as an example.

config/routes/backend/article.yaml

app_backend_article:
 resource: |
 alias: app.article
 section: backend
 except: ['show']
 redirect: update
 grid: app_backend_article
 vars:
 all:
 subheader: app.ui.manage_articles
 index:
 icon: newspaper
 templates: backend/crud
 type: sylius.resource

And add it on backend routes configuration.

config/routes/backend/_main.yaml

[...]

app_backend_article:
 resource: "article.yaml"

And that’s all!

Learn More

	Configuring routes in sylius documentation [https://github.com/Sylius/SyliusResourceBundle/blob/master/docs/routing.md]

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

How to configure backend menu

To configure backend menu for your entity, you have to edit src/Menu/AdminMenuBuilder.php.

// src/Menu/AdminMenuBuilder.php

public function createMenu(array $options): ItemInterface
{
 // add method ...
 $this->addContentSubMenu($menu);
 // rest of the code

 return $menu;
}

/**
 * @param ItemInterface $menu
 *
 * @return ItemInterface
 */
private function addContentSubMenu(ItemInterface $menu): ItemInterface
{
 $content = $menu
 ->addChild('content')
 ->setLabel('sylius.ui.content')
 ;

 $content->addChild('backend_article', ['route' => 'app_backend_article_index'])
 ->setLabel('app.ui.articles')
 ->setLabelAttribute('icon', 'newspaper');

 return $content;
}

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

How to configure a fixture factory

First you have to create a fixture factory. This service is responsible to create new instance of the resource and handle options.
This allows to combine random and custom data on your data fixtures.

namespace App\Fixture\Factory;

use App\Entity\Article;
use Monofony\Plugin\FixturesPlugin\Fixture\Factory\AbstractExampleFactory;
use Sylius\Component\Resource\Factory\FactoryInterface;
use Symfony\Component\OptionsResolver\Options;
use Symfony\Component\OptionsResolver\OptionsResolver;

final class ArticleExampleFactory extends AbstractExampleFactory
{
 /** @var FactoryInterface */
 private $articleFactory;

 /** @var \Faker\Generator */
 private $faker;

 /** @var OptionsResolver */
 private $optionsResolver;

 public function __construct(FactoryInterface $articleFactory)
 {
 $this->articleFactory = $articleFactory;

 $this->faker = \Faker\Factory::create();
 $this->optionsResolver = new OptionsResolver();

 $this->configureOptions($this->optionsResolver);
 }

 /**
 * {@inheritdoc}
 */
 protected function configureOptions(OptionsResolver $resolver): void
 {
 $resolver
 ->setDefault('title', function (Options $options) {
 return ucfirst($this->faker->words(3, true));
 });
 }

 /**
 * {@inheritdoc}
 */
 public function create(array $options = []): Article
 {
 $options = $this->optionsResolver->resolve($options);

 /** @var Article $article */
 $article = $this->articleFactory->createNew();
 $article->setTitle($options['title']);

 return $article;
 }
}

Thanks to services configuration, your new service is already registered and ready to use:

$ bin/console debug:container App\Fixture\Factory\ArticleExampleFactory

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

How to configure your fixture options

Now you have to create a fixture service. This defines options you can use on fixtures bundle configurations yaml files [https://github.com/Monofony/Monofony/blob/0.x/src/Monofony/MetaPack/CoreMeta/.recipe/config/sylius/fixtures.yaml].

namespace App\Fixture;

use Monofony\Plugin\FixturesPlugin\Fixture\AbstractResourceFixture;
use Symfony\Component\Config\Definition\Builder\ArrayNodeDefinition;

class ArticleFixture extends AbstractResourceFixture
{
 public function __construct(ObjectManager $objectManager, ArticleExampleFactory $articleExampleFactory)
 {
 parent::__construct($objectManager, $articleExampleFactory);
 }

 /**
 * {@inheritdoc}
 */
 public function getName(): string
 {
 return 'article';
 }

 /**
 * {@inheritdoc}
 */
 protected function configureResourceNode(ArrayNodeDefinition $resourceNode)
 {
 $resourceNode
 ->children()
 ->scalarNode('title')->cannotBeEmpty()->end()
 ;
 }
}

In this file we have only one custom option which is the article title.

Thanks to autowiring system, you can already use it.

$ bin/console debug:container App\Fixture\ArticleFixture

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

How to use it on your suite

config/sylius/fixtures.yaml

sylius_fixtures:
 suites:
 default:
 listeners:
 orm_purger: ~
 logger: ~

 fixtures:
 [...]

 article:
 options:
 random: 10
 custom:
 -
 title: "Awesome article"

it will generates 10 random articles and one custom with title Awesome article.

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

How to load your data fixtures

You can load all your data fixtures using this command.

$ bin/console sylius:fixtures:load

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

How to use Phpspec to design your code

	How to configure phpspec with code coverage

	How to disable phpspec code coverage

	How to design entities with phpspec

	How to design services with phpspec

Learn more

Note

To learn more, read the Phpspec documentation [http://www.phpspec.net/en/stable/manual/introduction.html].

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

How to configure phpspec with code coverage

By default, phpspec on Monofony is configured with code coverage which needs xdebug or phpdbg installed.
Thus you have two options:
* install xdebug
* install phpdbg (easier and faster)

Note

But if you don’t need that feature, disable code coverage.

Install phpdbg

$ # on linux
$ sudo apt-get install php7.2-phpdbg
$
$ # on max
$ brew install php72-phpdbg

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

How to disable phpspec code coverage

$ cp phpspec.yml.dist phpspec

And just comment the content

extensions:
LeanPHP\PhpSpec\CodeCoverage\CodeCoverageExtension: ~

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

How to design entities with phpspec

Lets configure an Article entity with a title and an author.
Title is a simple string and author implements CustomerInterface.

Warning

By default, phpspec on Monofony is configured with code coverage.
Learn how to configure phpspec with code coverage or disable code coverage.

Generate phpspec for your entity

$ vendor/bin/phpspec describe App/Entity/Article

$ # with phpdbg installed
$ phpdbg -qrr vendor/bin/phpspec describe App/Entity/Article

spec/src/App/Entity/Article.php

namespace spec\App\Entity;

use App\Entity\Article;
use PhpSpec\ObjectBehavior;
use Prophecy\Argument;

class ArticleSpec extends ObjectBehavior
{
 function it_is_initializable()
 {
 $this->shouldHaveType(Article::class);
 }
}

Run phpspec and do not fear Red

To run phpspec for our Article entity, run this command:

$ vendor/bin/phpspec run spec/App/Entity/ArticleSpec.php -n
$
$ # with phpdbg installed
$ phpdbg -qrr vendor/bin/phpspec run spec/App/Entity/ArticleSpec.php -n

And be happy with your first error message with red color.

Note

You can simply run all the phpspec tests by running vendor/bin/phpspec run -n

Create a minimal Article class

src/App/Entity/Article.php

namespace App\Entity;

class Article
{
}

Rerun phpspec and see a beautiful green color.

Specify it implements sylius resource interface

function it_implements_sylius_resource_interface(): void
{
 $this->shouldImplement(ResourceInterface::class);
}

Warning

And Rerun phpspec, DO NOT FEAR RED COLOR!
It’s important to check that you write code which solves your specifications.

Solve this on your entity

src/App/Entity/Article.php

namespace App\Entity;

use Sylius\Component\Resource\Model\ResourceInterface;

class Article implements ResourceInterface
{
 use IdentifiableTrait;
}

Warning

Rerun phpspec again and check this specification is solved.

Specify title behaviours

function it_has_no_title_by_default(): void
{
 $this->getTitle()->shouldReturn(null);
}

function its_title_is_mutable(): void
{
 $this->setTitle('This documentation is so great');
 $this->getTitle()->shouldReturn('This documentation is so great');
}

Warning

Don’t forget to rerun phpspec on each step.

Add title on Article entity

src/App/Entity/Article.php

/**
 * @var string|null
 */
private $title;

/**
 * @return string|null
 */
public function getTitle(): ?string
{
 return $this->title;
}

/**
 * @param string|null $title
 */
public function setTitle(?string $title): void
{
 $this->title = $title;
}

Specify author of the article

spec/src/App/Entity/Article.php

use Sylius\Component\Customer\Model\CustomerInterface;

// [...]

function its_author_is_mutable(CustomerInterface $author): void
{
 $this->setAuthor($author);
 $this->getAuthor()->shouldReturn($author);
}

Add author on your entity

src/App/Entity/Article.php

// [...]

/**
 * @var CustomerInterface|null
 */
private $author;

// [...]

/**
 * @return CustomerInterface|null
 */
public function getAuthor(): ?CustomerInterface
{
 return $this->author;
}

/**
 * @param CustomerInterface|null $author
 */
public function setAuthor(?CustomerInterface $author): void
{
 $this->author = $author;
}

That’s all to design your first entity!

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

How to design services with phpspec

Lets configure an Article factory to create an article for an author.
This Author implements CustomerInterface.

Generate phpspec for your entity factory

$ vendor/bin/phpspec describe App/Factory/ArticleFactory

$ # with phpdbg installed
$ phpdbg -qrr vendor/bin/phpspec describe App/Factory/ArticleFactory

Run phpspec and do not fear Red

To run phpspec for our Article factory, run this command:

$ vendor/bin/phpspec run spec/App/Factory/ArticleFactory.php -n
$
$ # with phpdbg installed
$ phpdbg -qrr vendor/bin/phpspec run spec/App/Factory/ArticleFactorySpec.php -n

And be happy with your first error message with red color.

Note

You can simply run all the phpspec tests by running vendor/bin/phpspec run -n

Create a minimal article factory class

src/Factory/ArticleFactory.php

namespace App\Factory;

class ArticleFactory
{
}

Rerun phpspec and see a beautiful green color.

Specify it implements sylius factory interface

spec/App/Factory/ArticleFactorySpec.php

function it_implements_sylius_factory_interface(): void
{
 $this->shouldImplement(FactoryInterface::class);
}

Warning

Don’t forget to rerun phpspec on each step.

Solve this on your factory

src/Factory/ArticleFactory.php

namespace App\Factory;

use Sylius\Component\Resource\Factory\FactoryInterface;

class ArticleFactory implements FactoryInterface
{
 /**
 * {@inheritdoc}
 */
 public function createNew()
 {
 }
}

Specify it creates articles

spec/App/Factory/ArticleFactorySpec.php

// [...]

function its_creates_articles(): void
{
 $article = $this->createNew();

 $article->shouldImplement(Article::class);
}

Solve this on your factory

src/Factory/ArticleFactory.php

namespace App\Factory;

use Sylius\Component\Resource\Factory\FactoryInterface;

class ArticleFactory implements FactoryInterface
{
 /** @var string */
 private $className;

 public function __construct(string $className)
 {
 $this->className = $className;
 }

 /**
 * {@inheritdoc}
 */
 public function createNew(): Article
 {
 return new $this->className();
 }
}

Running this step will throw this exception:

exception [err:ArgumentCountError("Too few arguments to function App\Factory\ArticleFactory::__construct(), 0 passed and exactly 1 expected")] has been thrown.

To add arguments on constructor, go back to your factory spec and add these lines:

spec/App/Factory/ArticleFactorySpec.php

namespace spec\App\Factory;

use App\Entity\Article;
use App\Factory\ArticleFactory;
use PhpSpec\ObjectBehavior;
use Sylius\Component\Resource\Factory\FactoryInterface;

class ArticleFactorySpec extends ObjectBehavior
{
 function let()
 {
 $this->beConstructedWith(Article::class);
 }

 // [...]
}

Rerun phpspec and it should be solved.

Note

Here you pass a string, but you often need to pass objects on constructor. You just have to add them on arguments of the let method and don’t forget to use typehints.

Here is an example with object arguments:

function let(FactoryInterface $factory)
{
 $this->beConstructedWith($factory);
}

Specify it creates articles for an author

spec/App/Factory/ArticleFactorySpec.php

// [...]

function its_creates_articles_for_an_author(CustomerInterface $author): void
{
 $article = $this->createForAuthor($author);

 $article->getAuthor()->shouldReturn($author);
}

Add this method on your factory

src/Factory/ArticleFactory.php

// [...]

/**
 * @param CustomerInterface $author
 *
 * @return Article
 */
public function createForAuthor(CustomerInterface $author): Article
{
 $article = $this->createNew();
 $article->setAuthor($author);

 return $article;
}

And that’s all to specify this simple article factory.

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

How to use Behat to design your features

Note

This section is based on the great Sylius documentation [https://docs.sylius.com].

Behaviour driven development is an approach to software development process that provides software development and management teams
with shared tools and a shared process to collaborate on software development. The awesome part of BDD is its ubiquitous language,
which is used to describe the software in English-like sentences of domain specific language.

The application’s behaviour is described by scenarios, and those scenarios are turned into automated test suites with tools such as Behat.

Sylius behaviours are fully covered with Behat scenarios. There are more than 1200 scenarios in the Sylius suite, and if you want
to understand some aspects of Sylius better, or are wondering how to configure something, we strongly recommend
reading them. They can be found in the features/ directory of the Sylius/Sylius repository.

We use FriendsOfBehat/SymfonyExtension [https://github.com/FriendsOfBehat/SymfonyExtension] to integrate Behat with Symfony.

	Basic Usage

	How to add a new context?

	How to add a new page object?

	How to define a new suite?

	How to use transformers?

	How to change Behat application base url

Learn more

Note

To learn more, read the Behat documentation [http://behat.org/en/latest/guides.html].

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

Basic Usage

The best way of understanding how things work in detail is showing and analyzing examples, that is why this section gathers all the knowledge from the previous chapters.
Let’s assume that we are going to implement the functionality of managing countries in our system.
Now let us show you the flow.

Describing features

Let’s start with writing our feature file, which will contain answers to the most important questions:
Why (benefit, business value), who (actor using the feature) and what (the feature itself).
It should also include scenarios, which serve as examples of how things supposed to work.
Let’s have a look at the features/addressing/managing_countries/adding_country.feature file.

features/addressing/managing_countries/adding_country.feature

@managing_countries
Feature: Adding a new country
 In order to sell my goods to different countries
 As an Administrator
 I want to add a new country to the store

 Background:
 Given I am logged in as an administrator

 @ui
 Scenario: Adding country
 When I want to add a new country
 And I choose "United States"
 And I add it
 Then I should be notified that it has been successfully created
 And the country "United States" should appear in the store

Pay attention to the form of these sentences. From the developer point of view they are hiding the details of the feature’s implementation.
Instead of describing “When I click on the select box And I choose United States from the dropdown Then I should see the United States country in the table”
- we are using sentences that are less connected with the implementation, but more focused on the effects of our actions.
A side effect of such approach is that it results in steps being really generic, therefore if we want to add another way of testing this feature for instance in the domain or api context,
it will be extremely easy to apply. We just need to add a different tag (in this case “@domain”) and of course implement the proper steps in the domain context of our system.
To be more descriptive let’s imagine that we want to check if a country is added properly in two ways.
First we are checking if the adding works via frontend, so we are implementing steps that are clicking, opening pages,
filling fields on forms and similar, but also we want to check this action regardlessly of the frontend, for that we need the domain, which allows us to perform actions only on objects.

Choosing a correct suite

After we are done with a feature file, we have to create a new suite for it. At the beginning we have decided that it will be a frontend/user interface feature, that is why we are placing it in “config/suites/ui/addressing/managing_countries.yaml”.

config/suites/ui/addressing/managing_countries.yaml

default:
 suites:
 ui_managing_countries:
 contexts:
 # This service is responsible for clearing database before each scenario,
 # so that only data from the current and its background is available.
 - App\Tests\Behat\Context\Hook\DoctrineORMContext

 # The transformer contexts services are responsible for all the transformations of data in steps:
 # For instance "And the country "France" should appear in the store" transforms "(the country "France")" to a proper Country object, which is from now on available in the scope of the step.
 - App\Tests\Behat\Context\Transform\CountryContext
 - App\Tests\Behat\Context\Transform\SharedStorageContext

 # The setup contexts here are preparing the background, adding available countries and users or administrators.
 # These contexts have steps like "I am logged in as an administrator" already implemented.
 - App\Tests\Behat\Context\Setup\GeographicalContext
 - App\Tests\Behat\Context\Setup\SecurityContext

 # Lights, Camera, Action!
 # Those contexts are essential here we are placing all action steps like "When I choose "France" and I add it Then I should ne notified that...".
 - App\Tests\Behat\Context\Ui\Backend\ManagingCountriesContext
 - App\Tests\Behat\Context\Ui\Backend\NotificationContext
 filters:
 tags: "@managing_countries && @ui"

A very important thing that is done here is the configuration of tags, from now on Behat will be searching for all your features tagged with @managing_countries and your scenarios tagged with @ui.

We have mentioned with the generic steps we can easily switch our testing context to @domain. Have a look how it looks:

config/suites/domain/addressing/managing_countries.yaml

default:
 suites:
 domain_managing_countries:
 contexts:
 - App\Tests\Behat\Context\Hook\DoctrineORMContext

 - App\Tests\Behat\Context\Transform\CountryContext
 - App\Tests\Behat\Context\Transform\SharedStorageContext

 - App\Tests\Behat\Context\Setup\GeographicalContext
 - App\Tests\Behat\Context\Setup\SecurityContext

 # Domain step implementation.
 - App\Tests\Behat\Context\Domain\Backend\ManagingCountriesContext
 filters:
 tags: "@managing_countries && @domain"

We are almost finished with the suite configuration.

Registering Pages

The page object approach allows us to hide all the detailed interaction with ui (html, javascript, css) inside.

	We have three kinds of pages:

	
	Page - First layer of our pages it knows how to interact with DOM objects. It has a method getUrl(array $urlParameters) where you can define a raw url to open it.

	SymfonyPage - This page extends the Page. It has a router injected so that the getUrl() method generates a url from the route name which it gets from the getRouteName() method.

	Base Crud Pages (IndexPage, CreatePage, UpdatePage) - These pages extend SymfonyPage and they are specific to the Sylius resources. They have a resource name injected and therefore they know about the route name.

There are two ways to manipulate UI - by using getDocument() or getElement('your_element').
First method will return a DocumentElement which represents an html structure of the currently opened page,
second one is a bit more tricky because it uses the ->getDefinedElements(): array method and it will return a NodeElement which represents only the restricted html structure.

Usage example of getElement('your_element') and getDefinedElements() methods.

final class CreatePage extends SymfonyPage implements CreatePageInterface
{
 // This method returns a simple associative array, where the key is the name of your element and the value is its locator.
 protected function getDefinedElements(): array
 {
 return array_merge(parent::getDefinedElements(): array, [
 'provinces' => '#sylius_country_provinces',
]);
 }

 // By default it will assume that your locator is css.
 // Example with xpath.
 protected function getDefinedElements(): array
 {
 return array_merge(parent::getDefinedElements(): array, [
 'provinces_css' => '.provinces',
 'provinces_xpath' => ['xpath' => '//*[contains(@class, "provinces")]'], // Now your value is an array where key is your locator type.
]);
 }

 // Like that you can easily manipulate your page elements.
 public function addProvince(ProvinceInterface $province): void
 {
 $provinceSelectBox = $this->getElement('provinces');

 $provinceSelectBox->selectOption($province->getName());
 }
}

Let’s get back to our main example and analyze our scenario. We have steps like:

When I choose "France"
And I add it
Then I should be notified that it has been successfully created
And the country "France" should appear in the store

namespace App\Tests\Behat\Page\Backend\Country;

use App\Tests\Behat\Page\Backend\Crud\CreatePage as BaseCreatePage;

final class CreatePage extends BaseCreatePage implements CreatePageInterface
{
 public function chooseName(string $name): void
 {
 $this->getDocument()->selectFieldOption('Name', $name);
 }

 public function create(): void
 {
 $this->getDocument()->pressButton('Create');
 }
}

namespace App\Tests\Behat\Page\Backend\Country;

use App\Tests\Behat\Page\Backend\Crud\IndexPage as BaseIndexPage;

final class IndexPage extends BaseIndexPage implements IndexPageInterface
{
 public function isSingleResourceOnPage(array $parameters): bool
 {
 try {
 // Table accessor is a helper service which is responsible for all html table operations.
 $rows = $this->tableAccessor->getRowsWithFields($this->getElement('table'), $parameters);

 return 1 === count($rows);
 } catch (ElementNotFoundException $exception) {
 // Table accessor throws this exception when cannot find table element on page.
 return false;
 }
 }
}

Warning

There is one small gap in this concept - PageObjects is not a concrete instance of the currently opened page, they only mimic its behaviour (dummy pages).
This gap will be more understandable on the below code example.

// Of course this is only to illustrate this gap.

class HomePage
{
 // In this context on home page sidebar you have for example weather information in selected countries.
 public function readWeather()
 {
 return $this->getElement('sidebar')->getText();
 }

 protected function getDefinedElements(): array
 {
 return ['sidebar' => ['css' => '.sidebar']]
 }

 protected function getUrl()
 {
 return 'http://your_domain.com';
 }
}

class LeagueIndexPage
{
 // In this context you have for example football match results.
 public function readMatchResults()
 {
 return $this->getElement('sidebar')->getText();
 }

 protected function getDefinedElements(): array
 {
 return ['sidebar' => ['css' => '.sidebar']]
 }

 protected function getUrl()
 {
 return 'http://your_domain.com/leagues/'
 }
}

final class GapContext implements Context
{
 private $homePage;
 private $leagueIndexPage;

 /**
 * @Given I want to be on Homepage
 */
 public function iWantToBeOnHomePage() // After this method call we will be on "http://your_domain.com".
 {
 $this->homePage->open(); //When we add @javascript tag we can actually see this thanks to selenium.
 }

 /**
 * @Then I want to see the sidebar and get information about the weather in France
 */
 public function iWantToReadSideBarOnHomePage($someInformation) // Still "http://your_domain.com".
 {
 $someInformation === $this->leagueIndexPage->readMatchResults() // This returns true, but wait a second we are on home page (dummy pages).

 $someInformation === $this->homePage->readWeather() // This also returns true.
 }
}

Registering contexts

As it was shown in the previous section we have registered a lot of contexts, so we will show you only some of the steps implementation.

Given I want to add a new country
And I choose "United States"
And I add it
Then I should be notified that it has been successfully created
And the country "United States" should appear in the store

Let’s start with essential one ManagingCountriesContext

Ui contexts

namespace App\Tests\Behat\Context\Ui\Backend

use Behat\Behat\Context\Context;

final class ManagingCountriesContext implements Context
{
 /** @var IndexPageInterface */
 private $indexPage;

 /** @var CreatePageInterface */
 private $createPage;

 /** @var UpdatePageInterface */
 private $updatePage;

 public function __construct(
 IndexPageInterface $indexPage,
 CreatePageInterface $createPage,
 UpdatePageInterface $updatePage
) {
 $this->indexPage = $indexPage;
 $this->createPage = $createPage;
 $this->updatePage = $updatePage;
 }

 /**
 * @Given I want to add a new country
 */
 public function iWantToAddNewCountry(): void
 {
 $this->createPage->open(); // This method will send request.
 }

 /**
 * @When I choose :countryName
 */
 public function iChoose($countryName): void
 {
 $this->createPage->chooseName($countryName);
 // Great benefit of using page objects is that we hide html manipulation behind a interfaces so we can inject different CreatePage which implements CreatePageInterface
 // And have different html elements which allows for example chooseName($countryName).
 }

 /**
 * @When I add it
 */
 public function iAddIt(): void
 {
 $this->createPage->create();
 }

 /**
 * @Then /^the (country "([^"]+)") should appear in the store$/
 */
 public function countryShouldAppearInTheStore(CountryInterface $country): void // This step use Country transformer to get Country object.
 {
 $this->indexPage->open();

 //Webmozart assert library.
 Assert::true(
 $this->indexPage->isSingleResourceOnPage(['code' => $country->getCode()]),
 sprintf('Country %s should exist but it does not', $country->getCode())
);
 }
}

namespace App\Tests\Behat\Context\Ui\Backend

use Behat\Behat\Context\Context;

final class NotificationContext implements Context
{
 /**
 * This is a helper service which give access to proper notification elements.
 *
 * @var NotificationCheckerInterface
 */
 private $notificationChecker;

 /**
 * @param NotificationCheckerInterface $notificationChecker
 */
 public function __construct(NotificationCheckerInterface $notificationChecker)
 {
 $this->notificationChecker = $notificationChecker;
 }

 /**
 * @Then I should be notified that it has been successfully created
 */
 public function iShouldBeNotifiedItHasBeenSuccessfullyCreated(): void
 {
 $this->notificationChecker->checkNotification('has been successfully created.', NotificationType::success());
 }
}

Transformer contexts

namespace App\Tests\Behat\Context\Transform;

use Behat\Behat\Context\Context;

final class CountryContext implements Context
{
 /** @var CountryNameConverterInterface */
 private $countryNameConverter;

 /** @var RepositoryInterface */
 private $countryRepository;

 public function __construct(
 CountryNameConverterInterface $countryNameConverter,
 RepositoryInterface $countryRepository
) {
 $this->countryNameConverter = $countryNameConverter;
 $this->countryRepository = $countryRepository;
 }

 /**
 * @Transform /^country "([^"]+)"$/
 * @Transform /^"([^"]+)" country$/
 */
 public function getCountryByName(string $countryName): Country // Thanks to this method we got in our ManagingCountries an Country object.
 {
 $countryCode = $this->countryNameConverter->convertToCode($countryName);
 $country = $this->countryRepository->findOneBy(['code' => $countryCode]);

 Assert::notNull(
 $country,
 'Country with name %s does not exist'
);

 return $country;
 }
}

namespace App\Tests\Behat\Context\Ui\Backend;

use App\Tests\Behat\Page\Backend\Country\UpdatePageInterface;
use Behat\Behat\Context\Context;

final class ManagingCountriesContext implements Context
{
 /** @var UpdatePageInterface */
 private $updatePage;

 public function __construct(UpdatePageInterface $updatePage)
 {
 $this->updatePage = $updatePage;
 }

 /**
 * @Given /^I want to create a new province in (country "[^"]+")$/
 */
 public function iWantToCreateANewProvinceInCountry(CountryInterface $country)
 {
 $this->updatePage->open(['id' => $country->getId()]);

 $this->updatePage->clickAddProvinceButton();
 }
}

namespace App\Tests\Behat\Context\Transform;

use Behat\Behat\Context\Context;

final class ShippingMethodContext implements Context
{
 /** @var ShippingMethodRepositoryInterface */
 private $shippingMethodRepository;

 public function __construct(ShippingMethodRepositoryInterface $shippingMethodRepository)
 {
 $this->shippingMethodRepository = $shippingMethodRepository;
 }

 /**
 * @Transform :shippingMethod
 */
 public function getShippingMethodByName($shippingMethodName)
 {
 $shippingMethod = $this->shippingMethodRepository->findOneByName($shippingMethodName);
 if (null === $shippingMethod) {
 throw new \Exception('Shipping method with name "'.$shippingMethodName.'" does not exist');
 }

 return $shippingMethod;
 }
}

namespace App\Tests\Behat\Context\Ui\Admin;

use App\Tests\Behat\Page\Admin\ShippingMethod\UpdatePageInterface;
use Behat\Behat\Context\Context;

final class ShippingMethodContext implements Context
{
 /** @var UpdatePageInterface */
 private $updatePage;

 public function __construct(UpdatePageInterface $updatePage)
 {
 $this->updatePage = $updatePage;
 }

 /**
 * @Given I want to modify a shipping method :shippingMethod
 */
 public function iWantToModifyAShippingMethod(ShippingMethodInterface $shippingMethod)
 {
 $this->updatePage->open(['id' => $shippingMethod->getId()]);
 }
}

Warning

Contexts should have single responsibility and this segregation (Setup, Transformer, Ui, etc…) is not accidental.
We shouldn’t create objects in transformer contexts.

Setup contexts

For setup context we need different scenario with more background steps and all preparing scene steps.
Editing scenario will be great for this example:

Scenario:

Given the store has disabled country "France"
And I want to edit this country
When I enable it
And I save my changes
Then I should be notified that it has been successfully edited
And this country should be enabled

namespace App\Tests\Behat\Context\Setup;

use Behat\Behat\Context\Context;

final class GeographicalContext implements Context
{
 /** @var SharedStorageInterface */
 private $sharedStorage;

 /** @var FactoryInterface */
 private $countryFactory;

 /** @var RepositoryInterface */
 private $countryRepository;

 /** @var CountryNameConverterInterface */
 private $countryNameConverter;

 public function __construct(
 SharedStorageInterface $sharedStorage,
 FactoryInterface $countryFactory,
 RepositoryInterface $countryRepository,
 CountryNameConverterInterface $countryNameConverter
) {
 $this->sharedStorage = $sharedStorage;
 $this->countryFactory = $countryFactory;
 $this->countryRepository = $countryRepository;
 $this->countryNameConverter = $countryNameConverter;
 }

 /**
 * @Given /^the store has disabled country "([^"]*)"$/
 */
 public function theStoreHasDisabledCountry($countryName) // This method save country in data base.
 {
 $country = $this->createCountryNamed(trim($countryName));
 $country->disable();

 $this->sharedStorage->set('country', $country);
 // Shared storage is an helper service for transferring objects between steps.
 // There is also SharedStorageContext which use this helper service to transform sentences like "(this country), (it), (its), (theirs)" into Country Object.

 $this->countryRepository->add($country);
 }

 private function createCountryNamed(string $name): CountryInterface
 {
 /** @var CountryInterface $country */
 $country = $this->countryFactory->createNew();
 $country->setCode($this->countryNameConverter->convertToCode($name));

 return $country;
 }
}

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

How to add a new context?

Thanks to symfony autowiring, most of your contexts are ready to use.

But if you need to manually route an argument, it is needed to add a service in config/services_test.yaml file.

App\Tests\Behat\Context\CONTEXT_CATEGORY\CONTEXT_NAME:
 arguments:
 $specificArgument: App\SpecificArgument

Then you can use it in your suite configuration:

default:
 suites:
 SUITE_NAME:
 contexts:
 - 'App\Tests\Behat\Context\CONTEXT_CATEGORY\CONTEXT_NAME'
 filters:
 tags: "@SUITE_TAG"

Note

The context categories are usually one of cli, hook, setup, transform, ui.

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

How to add a new page object?

Sylius uses a solution inspired by SensioLabs/PageObjectExtension, which provides an infrastructure to create
pages that encapsulates all the user interface manipulation in page objects.

To create a new page object it is needed to add a service.

The simplest Symfony-based page looks like:

use FriendsOfBehat\PageObjectExtension\Page\SymfonyPage;

class LoginPage extends SymfonyPage
{
 public function getRouteName(): string
 {
 return 'app_frontend_security_login';
 }
}

Note

There are some boilerplates for common pages, which you may use. The available parents are FriendsOfBehat\PageObjectExtension\Page\Page
and FriendsOfBehat\PageObjectExtension\Page\SymfonyPage. It is not required for a page to extend any class as
pages are POPOs (Plain Old PHP Objects).

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

How to define a new suite?

To define a new suite it is needed to create a suite configuration file in a one of cli/ui directory inside config/suites.
Then register that file in config/suites.yaml.

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

How to use transformers?

Behat provides many awesome features, and one of them is definitely transformers. They can be used to transform (usually widely used) parts of steps and return some values from them,
to prevent unnecessary duplication in many steps’ definitions.

Basic transformer

Example is always the best way to clarify, so let’s look at this:

/**
 * @Transform /^"([^"]+)" shipping method$/
 * @Transform /^shipping method "([^"]+)"$/
 * @Transform :shippingMethod
 */
public function getShippingMethodByName($shippingMethodName)
{
 $shippingMethod = $this->shippingMethodRepository->findOneByName($shippingMethodName);

 Assert::notNull(
 $shippingMethod,
 sprintf('Shipping method with name "%s" does not exist', $shippingMethodName)
);

 return $shippingMethod;
}

This transformer is used to return ShippingMethod object from proper repository using it’s name. It also throws exception if such a method does not exist. It can be used in plenty of steps,
that have shipping method name in it.

Note

In the example above a Webmozart assertion [https://github.com/webmozart/assert] library was used, to assert a value and throw an exception if needed.

But how to use it? It is as simple as that:

/**
 * @Given /^(shipping method "[^"]+") belongs to ("[^"]+" tax category)$/
 */
public function shippingMethodBelongsToTaxCategory(
 ShippingMethodInterface $shippingMethod,
 TaxCategoryInterface $taxCategory
) {
 // some logic here
}

If part of step matches transformer definition, it should be surrounded by parenthesis to be handled as whole expression. That’s it! As it is shown in the example, many transformers can be
used in the same step definition. Is it all? No! The following example will also work like charm:

/**
 * @When I delete shipping method :shippingMethod
 * @When I try to delete shipping method :shippingMethod
 */
public function iDeleteShippingMethod(ShippingMethodInterface $shippingMethod)
{
 // some logic here
}

It is worth to mention, that in such a case, transformer would be matched depending on a name after ‘:’ sign. So many transformes could be used when using this signature also.
This style gives an opportunity to write simple steps with transformers, without any regex, which would boost context readability.

Note

Transformer definition does not have to be implemented in the same context, where it is used. It allows to share them between many different contexts.

Transformers implemented in Sylius

Specified

There are plenty of transformers already implemented in Sylius. Most of them return specific resources from their repository, for example:

	tax category "Fruits" -> find tax category in their repository with name “Fruits”

	"Chinese banana" variant of product "Banana" -> find variant of specific product

etc. You’re free to use them in your own behat scenarios.

Note

All transformers definitions are currently kept in App\Tests\Behat\Context\Transform namespace.

Warning

Remember to include contexts with transformers in custom suite to be able to use them!

Generic

Moreover, there are also some more generic transformers, that could be useful in many different cases. They are now placed in two contexts: LexicalContext and SharedStorageContext.
Why are they so awesome? Let’s describe them one by one:

LexicalContext

	@Transform /^"(?:€|£|\$)((?:\d+\.)?\d+)"$/ -> tricky transformer used to parse price string with currency into integer (used to represent price in Sylius). It is used in steps like this promotion gives "€30.00" fixed discount to every order

	@Transform /^"((?:\d+\.)?\d+)%"$/ -> similar one, transforming percentage string into float (example: this promotion gives "10%" percentage discount to every order)

SharedStorageContext

Note

SharedStorage is kind of container used to keep objects, which can be shared between steps. It can be used, for example, to keep newly created promotion,
to use its name in checking existence step.

	@Transform /^(it|its|theirs)$/ -> amazingly useful transformer, that returns last resource saved in SharedStorage. It allows to simplify many steps used after creation/update (and so on) actions. Example: instead of writing When I create "Wade Wilson" customer/Then customer "Wade Wilson" should be registered just write When I create "Wade Wilson" customer/Then it should be registered

	@Transform /^(?:this|that|the) ([^"]+)$/ -> similar to previous one, but returns resource saved with specific key, for example this promotion will return resource saved with promotion key in SharedStorage

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

How to change Behat application base url

By default Behat uses https://localhost:8080/ as your application base url. If your one is different,
you need to create behat.yml files that will overwrite it with your custom url:

behat.yml

imports: ["behat.yml.dist"]

default:
 extensions:
 Behat\MinkExtension:
 base_url: http://my.custom.url

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

How to create your own statistics

The mechanism behind the displaying of statistics relies on tagged services which are supported since Symfony 4.3

Create your own statistic

Add a new class to /src/Dashboard/Statistic and make sure it implement the App\Dashboard\Statistics\StatisticInterface.
This way it will be automatically tagged with app.dashboard_statistic which is used to fetch all existing statistics.

It also enforces you to implement a function called generate() which need to return a string.

Note

The response of the generate function will be displayed as is in the dashboard.
Which means you can return anything, as long as it is a string.
Eg. in the CustomerStatistic it is an HTML block which shows you the amount of registered customers.

Order your statistics

Since Symfony 4.4 it is possible to sort your services with a static function called getDefaultPriority.
Here you need to return an integer to set the weight of the service. Statistics with a higher priority will be displayed first.
This is why we chose to work with negative values. (-1 for the first element, -2 for the second,…).
But feel free to use your own sequence when adding more statistics.

public static function getDefaultPriority(): int
{
 return -1;
}

Warning

If you change the priority it is necessary to clear your cache. Otherwise you won’t see the difference.

Add custom logic to your statistic

Because all statistics are services it’s perfectly possible to do anything with them as long as the generate function
returns a string. So you can inject any service you want trough Dependency Injection to build your statistic.

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

Basic example

This is a basic example. It fetches and renders the amount of registered customers.

namespace App\Dashboard\Statistics;

use App\Repository\CustomerRepository;
use Monofony\Component\Admin\Dashboard\Statistics\StatisticInterface;
use Symfony\Component\Templating\EngineInterface;

class CustomerStatistic implements StatisticInterface
{
 /** @var CustomerRepository */
 private $customerRepository;

 /** @var EngineInterface */
 private $engine;

 public function __construct(CustomerRepository $customerRepository, EngineInterface $engine)
 {
 $this->customerRepository = $customerRepository;
 $this->engine = $engine;
 }

 public function generate(): string
 {
 $amountCustomers = $this->customerRepository->countCustomers();

 return $this->engine->render('backend/dashboard/statistics/_amount_of_customers.html.twig', [
 'amountOfCustomers' => $amountCustomers,
]);
 }

 public static function getDefaultPriority(): int
 {
 return -1;
 }
}

Danger

This is an outdated documentation please read the new Monofony documentation [https://docs.monofony.com] instead.

Deployment

Authorized keys API

Adding ssh authorized keys for server on your local computer

$ cat ~/.ssh/id_rsa.pub | ssh mobizel@XXX.XXX.XX.XX "cat - >> ~/.ssh/authorized_keys"

and enter the correct password for username “mobizel” on server

Deploy the staging environment

$ bundle exec "cap staging deploy"

Deploy the production environment

$ bundle exec "cap production deploy"

Index

 A
 | C
 | F

A

 	
 	AdminUser

 	
 	Architecture

C

 	
 	Customer and AppUser

F

 	
 	Fixtures

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_images/twig.png

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Monofony Documentation

_images/doctrine.png
é doctrine

_images/symfonyfs.png
Symfony

_images/doc_logo.png
,J monofony

