
Monofony

Feb 22, 2023





Contents

1 The Book 3
1.1 The Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The Cookbook 11
2.1 The Cookbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Deployment 45
3.1 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Index 47

i



ii



Monofony

Danger: This is an outdated documentation please read the new Monofony documentation instead.

Monofony is a project based on Symfony Framework and Sylius.

Note: This documentation assumes you have a working knowledge of the Symfony Framework. If you’re not familiar
with Symfony, please start with reading the Quick Tour from the Symfony documentation.

Contents 1

https://docs.monofony.com
https://twitter.com/hashtag/Monofony
http://symfony.com
https://sylius.com
http://symfony.com/doc/current/quick_tour


Monofony

2 Contents



CHAPTER 1

The Book

Here you will find all the concepts used in the Monofony platform. The Book helps to understand how Monofony
works.

Danger: This is an outdated documentation please read the new Monofony documentation instead.

1.1 The Book

Here you will find all the concepts used in Monofony. The Books helps to understand how Monofony works.

1.1.1 Architecture

The key to understanding principles of Sylius internal organization. Here you will learn about the Resource layer, state
machines, events and general non e-commerce concepts adopted in the platform, like E-mails or Fixtures.

Danger: This is an outdated documentation please read the new Monofony documentation instead.

Architecture

Note: This section is based on the great Sylius documentation.

Before we dive separately into every Monofony concept, you need to have an overview of how our main application
is structured. In this chapter we will sketch this architecture and our basic, cornerstone concepts, but also some
supportive approaches, that you need to notice.

3

https://docs.monofony.com
https://docs.monofony.com
https://docs.sylius.com


Monofony

Danger: This is an outdated documentation please read the new Monofony documentation instead.

Architecture Overview

Before we dive separately into every Monofony concept, you need to have an overview of how our main application
is structured.

Fullstack Symfony

Monofony is based on Symfony, which is a leading PHP framework to create web applications. Using Symfony
allows developers to work better and faster by providing them with certainty of developing an application that is fully
compatible with the business rules, that is structured, maintainable and upgradable, but also it allows to save time by
providing generic re-usable modules.

Learn more about Symfony.

Doctrine

Doctrine is a family of PHP libraries focused on providing data persistence layer. The most important are the object-
relational mapper (ORM) and the database abstraction layer (DBAL). One of Doctrine’s key features is the possibility
to write database queries in Doctrine Query Language (DQL) - an object-oriented dialect of SQL.

To learn more about Doctrine - see their documentation.

Twig

Twig is a modern template engine for PHP that is really fast, secure and flexible. Twig is being used by Symfony.

To read more about Twig, go here.

4 Chapter 1. The Book

https://docs.monofony.com
http://symfony.com/what-is-symfony
http://www.doctrine-project.org/about.html
http://twig.sensiolabs.org/


Monofony

Third Party Libraries

Monofony uses a lot of libraries for various tasks:

• Sylius for routing, controllers, data fixtures, grids

• KnpMenu - for backend menus

• Imagine for images processing, generating thumbnails and cropping

• Pagerfanta for pagination

• Winzou State Machine - for the state machines handling

Danger: This is an outdated documentation please read the new Monofony documentation instead.

Fixtures

Fixtures are used mainly for testing, but also for having your website in a certain state, having defined data - they
ensure that there is a fixed environment in which your application is working.

Note: The way Fixtures are designed in Monofony is well described in the FixturesBundle documentation.

What are the available fixtures in Monofony?

To check what fixtures are defined in Monofony run:

$ php bin/console sylius:fixtures:list

How to load Monofony fixtures?

The recommended way to load the predefined set of Monofony fixtures is here:

$ php bin/console sylius:fixtures:load

What data is loaded by fixtures in Monofony?

All files that serve for loading fixtures of Monofony are placed in the App/Fixture/* directory.

And the specified data for fixtures is stored in the config/packages/sylius_fixtures.yaml file.

• Architecture Overview

• Fixtures

• Architecture Overview

• Fixtures

1.1. The Book 5

https://docs.sylius.com/en/latest/
http://symfony.com/doc/current/bundles/KnpMenuBundle/index.html
https://github.com/liip/LiipImagineBundle
https://github.com/whiteoctober/Pagerfanta
https://github.com/winzou/StateMachineBundle
https://docs.monofony.com
https://github.com/Sylius/SyliusFixturesBundle/blob/master/docs/index.md


Monofony

1.1.2 Users

This chapter will tell you more about the way Sylius handles users, customers and admins.

Danger: This is an outdated documentation please read the new Monofony documentation instead.

Users

Before we dive separately into every Monofony concept, you need to have an overview of how our main application
is structured. In this chapter we will sketch this architecture and our basic, cornerstone concepts, but also some
supportive approaches, that you need to notice.

Danger: This is an outdated documentation please read the new Monofony documentation instead.

AdminUser

The AdminUser entity extends the User entity. It is created to enable administrator accounts that have access to the
administration panel.

How to create an AdminUser programmatically?

The AdminUser is created just like every other entity, it has its own factory. By default it will have an administration
role assigned.

/** @var AdminUserInterface $admin */
$admin = $this->container->get('sylius.factory.admin_user')->createNew();

$admin->setEmail('administrator@test.com');
$admin->setPlainPassword('pswd');

$this->container->get('sylius.repository.admin_user')->add($admin);

Administration Security

In Monofony by default you have got the administration panel routes (/admin/*) secured by a firewall - its config-
uration can be found in the config/packages/security.yaml file.

Only the logged in AdminUsers are eligible to enter these routes.

Learn more

Note: To learn more, read the UserBundle documentation.

6 Chapter 1. The Book

https://docs.monofony.com
https://docs.monofony.com
https://docs.sylius.com/en/latest/components_and_bundles/bundles/SyliusUserBundle/index.html


Monofony

Danger: This is an outdated documentation please read the new Monofony documentation instead.

Customer and AppUser

For handling customers of your system AppUser is using a combination of two entities - Customer and AppUser. The
difference between these two entities is simple: the Customer is a guest on your application and the AppUser is a user
registered in the system - they have an account.

Customer

The Customer entity was created to collect data about non-registered guests of the system - ones that has been buying
without having an account or that have somehow provided us their e-mail.

How to create a Customer programmatically?

As usually, use a factory. The only required field for the Customer entity is email, provide it before adding it to the
repository.

/** @var CustomerInterface $customer */
$customer = $this->container->get('sylius.factory.customer')->createNew();

$customer->setEmail('customer@test.com');

$this->container->get('sylius.repository.customer')->add($customer);

The Customer entity can of course hold other information besides an email, it can be for instance billingAddress
and shippingAddress, firstName, lastName or birthday.

Note: The relation between the Customer and AppUser is bidirectional. Both entities hold a reference to each other.

AppUser

AppUser entity is designed for customers that have registered in the system - they have an account with both e-mail
and password. They can visit and modify their account.

While creating new account the existence of the provided email in the system is checked - if the email was present - it
will already have a Customer therefore the existing one will be assigned to the newly created AppUser, if not - a new
Customer will be created together with the AppUser.

How to create an AppUser programmatically?

Assuming that you have a Customer (either retrieved from the repository or a newly created one) - use a factory to
create a new AppUser, assign the existing Customer and a password via the setPlainPassword() method.

1.1. The Book 7

https://docs.monofony.com


Monofony

/** @var ShopUserInterface $user */
$user = $this->container->get('sylius.factory.app_user')->createNew();

// Now let's find a Customer by their e-mail:
/** @var CustomerInterface $customer */
$customer = $this->container->get('sylius.repository.customer')->findOneBy(['email' =>
→˓ 'customer@test.com']);

// and assign it to the ShopUser
$user->setCustomer($customer);
$user->setPlainPassword('pswd');

$this->container->get('sylius.repository.app_user')->add($user);

Changing the AppUser password

The already set password of an AppUser can be easily changed via the setPlainPassword() method.

$user->getPassword(); // returns encrypted password - 'pswd'

$user->setPlainPassword('resu1');
// the password will now be 'resu1' and will become encrypted while saving the user
→˓in the database

Customer related events

Event id Description
sylius.customer.post_register dispatched when a new Customer is registered
sylius.customer.pre_update dispatched when a Customer is updated
sylius.oauth_user.post_create dispatched when an OAuthUser is created
sylius.oauth_user.post_update dispatched when an OAuthUser is updated
sylius.app_user.post_create dispatched when a User is created
sylius.app_user.post_update dispatched when a User is updated
sylius.app_user.pre_delete dispatched before a User is deleted
sylius.user.email_verification.token dispatched when a verification token is requested
sylius.user.password_reset.request.
token

dispatched when a reset password token is requested

sylius.user.pre_password_change dispatched before user password is changed
sylius.user.pre_password_reset dispatched before user password is reset
sylius.user.security.implicit_login dispatched when an implicit login is done
security.interactive_login dispatched when an interactive login is done

Learn more:

Note: To learn more read: * the SyliusUserBundle documentation. * the SyliusCustomerBundle documentation.

• AdminUser

• Customer and AppUser

8 Chapter 1. The Book

https://docs.sylius.com/en/latest/components_and_bundles/bundles/SyliusUserBundle/index.html
https://docs.sylius.com/en/latest/components_and_bundles/bundles/SyliusCustomerBundle/index.html


Monofony

• AdminUser

• Customer and AppUser

• Architecture

• Fixtures

• Users

• AdminUser

• Customer and AppUser

1.1. The Book 9



Monofony

10 Chapter 1. The Book



CHAPTER 2

The Cookbook

The Cookbook is a collection of specific solutions for specific needs.

Danger: This is an outdated documentation please read the new Monofony documentation instead.

2.1 The Cookbook

2.1.1 Entities

Danger: This is an outdated documentation please read the new Monofony documentation instead.

How to configure your first resource

As an example we will take an Article entity.

namespace App\Entity;

use Doctrine\ORM\Mapping as ORM;
use Sylius\Component\Resource\Model\ResourceInterface;
use Symfony\Component\Validator\Constraints as Assert;

/**
* @ORM\Entity

* @ORM\Table(name="app_article")

*/
class Article implements ResourceInterface
{

use IdentifiableTrait;

(continues on next page)

11

https://docs.monofony.com
https://docs.monofony.com


Monofony

(continued from previous page)

/**
* @var string|null

*
* @ORM\Column(type="string")

*
* @Assert\NotBlank()

*/
private $title;

/**
* @return string|null

*/
public function getTitle(): ?string
{

return $this->title;
}

/**
* @param string|null $title

*/
public function setTitle(?string $title): void
{

$this->title = $title;
}

}

If you don’t add a form type, it uses a default form type. But it is a good practice to have one.

// src/Form/Type/ArticleType.php

namespace App\Form\Type;

use App\Entity\Article;
use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\Extension\Core\Type\TextType;
use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\OptionsResolver\OptionsResolver;

class ArticleType extends AbstractType
{

/**
* {@inheritdoc}

*/
public function buildForm(FormBuilderInterface $builder, array $options)
{

parent::buildForm($builder, $options);
$builder

->add('title', TextType::class, [
'label' => 'sylius.ui.title',

]);
}

/**
* {@inheritdoc}

*/
public function getBlockPrefix(): string

(continues on next page)

12 Chapter 2. The Cookbook

https://github.com/Sylius/SyliusResourceBundle/blob/master/src/Bundle/Form/Type/DefaultResourceType.php


Monofony

(continued from previous page)

{
return 'app_article';

}

/**
* {@inheritdoc}

*/
public function configureOptions(OptionsResolver $resolver): void
{

$resolver->setDefaults([
'data_class' => Article::class

]);
}

}

You now have to add it on Sylius Resource configuration.

# config/sylius/resources.yaml

sylius_resource:
resources:

app.article:
classes:

model: App\Entity\Article
form: App\Form\Type\ArticleType

Warning: Don’t forget to synchronize your database using Doctrine Migrations.

You can use these two commands to generate and synchronize your database.

$ bin/console doctrine:migrations:diff
$ bin/console doctrine:migrations:migrate

Learn More

• Sylius Resource Bundle documentation

• Doctrine migrations documentation

Danger: This is an outdated documentation please read the new Monofony documentation instead.

How to manage your new entity on the admin panel

To add a new grid, create a new grid configuration file in config/packages/grids/backend/ and import this
to sylius_grid configuration file

2.1. The Cookbook 13

https://github.com/Sylius/SyliusResourceBundle/blob/master/docs/index.md
https://symfony.com/doc/master/bundles/DoctrineMigrationsBundle/index.html
https://docs.monofony.com


Monofony

Create a new grid configuration file

# config/sylius/grids/backend/article.yaml

sylius_grid:
grids:

app_backend_article:
driver:

name: doctrine/orm
options:

class: "%app.model.article.class%"
sorting:

title: asc
fields:

title:
type: string
label: sylius.ui.title
sortable: null

filters:
search:

type: string
label: sylius.ui.search
options:

fields: [title]
actions:

main:
create:

type: create
item:

update:
type: update

delete:
type: delete

Warning: You need to clear the Symfony cache when creating a new sylius grid configuration file.

Manually importing you sylius_grid configuration (optional)

Grids configuration files are automatically detected when clearing the cache. You can manually add them if you prefer.

# config/sylius/grids.yaml

imports:
- { resource: 'grids/backend/article.yaml' }
- { resource: 'grids/backend/admin_user.yaml' }
- { resource: 'grids/backend/customer.yaml' }

Learn More

• Configuring grid in sylius documentation

• The whole configuration reference in sylius documentation

14 Chapter 2. The Cookbook

https://github.com/Sylius/SyliusGridBundle/blob/master/docs/index.md
https://github.com/Sylius/SyliusGridBundle/blob/master/docs/configuration.md


Monofony

Danger: This is an outdated documentation please read the new Monofony documentation instead.

How to configure backend routes

To configure backend routes for your entity, you have to create a new file on backend routes folder config/routes/
backend.

Let’s configure our “Article” routes as an example.

# config/routes/backend/article.yaml

app_backend_article:
resource: |

alias: app.article
section: backend
except: ['show']
redirect: update
grid: app_backend_article
vars:

all:
subheader: app.ui.manage_articles

index:
icon: newspaper

templates: backend/crud
type: sylius.resource

And add it on backend routes configuration.

# config/routes/backend/_main.yaml

[...]

app_backend_article:
resource: "article.yaml"

And that’s all!

Learn More

• Configuring routes in sylius documentation

Danger: This is an outdated documentation please read the new Monofony documentation instead.

How to configure backend menu

To configure backend menu for your entity, you have to edit src/Menu/AdminMenuBuilder.php.

// src/Menu/AdminMenuBuilder.php

public function createMenu(array $options): ItemInterface
{

(continues on next page)

2.1. The Cookbook 15

https://docs.monofony.com
https://github.com/Sylius/SyliusResourceBundle/blob/master/docs/routing.md
https://docs.monofony.com


Monofony

(continued from previous page)

// add method ...
$this->addContentSubMenu($menu);
// rest of the code

return $menu;
}

/**
* @param ItemInterface $menu

*
* @return ItemInterface

*/
private function addContentSubMenu(ItemInterface $menu): ItemInterface
{

$content = $menu
->addChild('content')
->setLabel('sylius.ui.content')

;

$content->addChild('backend_article', ['route' => 'app_backend_article_index'])
->setLabel('app.ui.articles')
->setLabelAttribute('icon', 'newspaper');

return $content;
}

• How to configure your first resource

• How to manage your new entity on the admin panel

• How to configure backend routes

• How to configure backend menu

2.1.2 Fixtures

Danger: This is an outdated documentation please read the new Monofony documentation instead.

How to configure a fixture factory

First you have to create a fixture factory. This service is responsible to create new instance of the resource and handle
options. This allows to combine random and custom data on your data fixtures.

namespace App\Fixture\Factory;

use App\Entity\Article;
use Monofony\Plugin\FixturesPlugin\Fixture\Factory\AbstractExampleFactory;
use Sylius\Component\Resource\Factory\FactoryInterface;
use Symfony\Component\OptionsResolver\Options;
use Symfony\Component\OptionsResolver\OptionsResolver;

final class ArticleExampleFactory extends AbstractExampleFactory
{

/** @var FactoryInterface */

(continues on next page)

16 Chapter 2. The Cookbook

https://docs.monofony.com


Monofony

(continued from previous page)

private $articleFactory;

/** @var \Faker\Generator */
private $faker;

/** @var OptionsResolver */
private $optionsResolver;

public function __construct(FactoryInterface $articleFactory)
{

$this->articleFactory = $articleFactory;

$this->faker = \Faker\Factory::create();
$this->optionsResolver = new OptionsResolver();

$this->configureOptions($this->optionsResolver);
}

/**
* {@inheritdoc}

*/
protected function configureOptions(OptionsResolver $resolver): void
{

$resolver
->setDefault('title', function (Options $options) {

return ucfirst($this->faker->words(3, true));
});

}

/**
* {@inheritdoc}

*/
public function create(array $options = []): Article
{

$options = $this->optionsResolver->resolve($options);

/** @var Article $article */
$article = $this->articleFactory->createNew();
$article->setTitle($options['title']);

return $article;
}

}

Thanks to services configuration, your new service is already registered and ready to use:

$ bin/console debug:container App\Fixture\Factory\ArticleExampleFactory

Danger: This is an outdated documentation please read the new Monofony documentation instead.

How to configure your fixture options

Now you have to create a fixture service. This defines options you can use on fixtures bundle configurations yaml files.

2.1. The Cookbook 17

https://docs.monofony.com
https://github.com/Monofony/Monofony/blob/0.x/src/Monofony/MetaPack/CoreMeta/.recipe/config/sylius/fixtures.yaml


Monofony

namespace App\Fixture;

use Monofony\Plugin\FixturesPlugin\Fixture\AbstractResourceFixture;
use Symfony\Component\Config\Definition\Builder\ArrayNodeDefinition;

class ArticleFixture extends AbstractResourceFixture
{

public function __construct(ObjectManager $objectManager, ArticleExampleFactory
→˓$articleExampleFactory)

{
parent::__construct($objectManager, $articleExampleFactory);

}

/**
* {@inheritdoc}

*/
public function getName(): string
{

return 'article';
}

/**
* {@inheritdoc}

*/
protected function configureResourceNode(ArrayNodeDefinition $resourceNode)
{

$resourceNode
->children()

->scalarNode('title')->cannotBeEmpty()->end()
;

}
}

In this file we have only one custom option which is the article title.

Thanks to autowiring system, you can already use it.

$ bin/console debug:container App\Fixture\ArticleFixture

Danger: This is an outdated documentation please read the new Monofony documentation instead.

How to use it on your suite

# config/sylius/fixtures.yaml

sylius_fixtures:
suites:

default:
listeners:

orm_purger: ~
logger: ~

fixtures:
[...]

(continues on next page)

18 Chapter 2. The Cookbook

https://docs.monofony.com


Monofony

(continued from previous page)

article:
options:

random: 10
custom:

-
title: "Awesome article"

it will generates 10 random articles and one custom with title Awesome article.

Danger: This is an outdated documentation please read the new Monofony documentation instead.

How to load your data fixtures

You can load all your data fixtures using this command.

$ bin/console sylius:fixtures:load

• How to configure a fixture factory

• How to configure your fixture options

• How to use it on your suite

• How to load your data fixtures

2.1.3 BDD

Danger: This is an outdated documentation please read the new Monofony documentation instead.

How to use Phpspec to design your code

Danger: This is an outdated documentation please read the new Monofony documentation instead.

How to configure phpspec with code coverage

By default, phpspec on Monofony is configured with code coverage which needs xdebug or phpdbg installed. Thus
you have two options: * install xdebug * install phpdbg (easier and faster)

Note: But if you don’t need that feature, disable code coverage.

Install phpdbg

2.1. The Cookbook 19

https://docs.monofony.com
https://docs.monofony.com
https://docs.monofony.com


Monofony

$ # on linux
$ sudo apt-get install php7.2-phpdbg
$
$ # on max
$ brew install php72-phpdbg

Danger: This is an outdated documentation please read the new Monofony documentation instead.

How to disable phpspec code coverage

$ cp phpspec.yml.dist phpspec

And just comment the content

# extensions:
# LeanPHP\PhpSpec\CodeCoverage\CodeCoverageExtension: ~

Danger: This is an outdated documentation please read the new Monofony documentation instead.

How to design entities with phpspec

Lets configure an Article entity with a title and an author. Title is a simple string and author implements CustomerIn-
terface.

Warning: By default, phpspec on Monofony is configured with code coverage. Learn how to configure phpspec
with code coverage or disable code coverage.

Generate phpspec for your entity

$ vendor/bin/phpspec describe App/Entity/Article

$ # with phpdbg installed
$ phpdbg -qrr vendor/bin/phpspec describe App/Entity/Article

# spec/src/App/Entity/Article.php

namespace spec\App\Entity;

use App\Entity\Article;
use PhpSpec\ObjectBehavior;
use Prophecy\Argument;

class ArticleSpec extends ObjectBehavior
{

function it_is_initializable()

(continues on next page)

20 Chapter 2. The Cookbook

https://docs.monofony.com
https://docs.monofony.com


Monofony

(continued from previous page)

{
$this->shouldHaveType(Article::class);

}
}

Run phpspec and do not fear Red

To run phpspec for our Article entity, run this command:

$ vendor/bin/phpspec run spec/App/Entity/ArticleSpec.php -n
$
$ # with phpdbg installed
$ phpdbg -qrr vendor/bin/phpspec run spec/App/Entity/ArticleSpec.php -n

And be happy with your first error message with red color.

Note: You can simply run all the phpspec tests by running vendor/bin/phpspec run -n

Create a minimal Article class

# src/App/Entity/Article.php

namespace App\Entity;

class Article
{
}

Rerun phpspec and see a beautiful green color.

Specify it implements sylius resource interface

function it_implements_sylius_resource_interface(): void
{

$this->shouldImplement(ResourceInterface::class);
}

Warning: And Rerun phpspec, DO NOT FEAR RED COLOR! It’s important to check that you write code which
solves your specifications.

Solve this on your entity

# src/App/Entity/Article.php

namespace App\Entity;

(continues on next page)

2.1. The Cookbook 21



Monofony

(continued from previous page)

use Sylius\Component\Resource\Model\ResourceInterface;

class Article implements ResourceInterface
{

use IdentifiableTrait;
}

Warning: Rerun phpspec again and check this specification is solved.

Specify title behaviours

function it_has_no_title_by_default(): void
{

$this->getTitle()->shouldReturn(null);
}

function its_title_is_mutable(): void
{

$this->setTitle('This documentation is so great');
$this->getTitle()->shouldReturn('This documentation is so great');

}

Warning: Don’t forget to rerun phpspec on each step.

Add title on Article entity

# src/App/Entity/Article.php

/**
* @var string|null

*/
private $title;

/**
* @return string|null

*/
public function getTitle(): ?string
{

return $this->title;
}

/**
* @param string|null $title

*/
public function setTitle(?string $title): void
{

$this->title = $title;
}

22 Chapter 2. The Cookbook



Monofony

Specify author of the article

# spec/src/App/Entity/Article.php

use Sylius\Component\Customer\Model\CustomerInterface;

// [...]

function its_author_is_mutable(CustomerInterface $author): void
{

$this->setAuthor($author);
$this->getAuthor()->shouldReturn($author);

}

Add author on your entity

# src/App/Entity/Article.php

// [...]

/**
* @var CustomerInterface|null

*/
private $author;

// [...]

/**
* @return CustomerInterface|null

*/
public function getAuthor(): ?CustomerInterface
{

return $this->author;
}

/**
* @param CustomerInterface|null $author

*/
public function setAuthor(?CustomerInterface $author): void
{

$this->author = $author;
}

That’s all to design your first entity!

Danger: This is an outdated documentation please read the new Monofony documentation instead.

How to design services with phpspec

Lets configure an Article factory to create an article for an author. This Author implements CustomerInterface.

2.1. The Cookbook 23

https://docs.monofony.com


Monofony

Generate phpspec for your entity factory

$ vendor/bin/phpspec describe App/Factory/ArticleFactory

$ # with phpdbg installed
$ phpdbg -qrr vendor/bin/phpspec describe App/Factory/ArticleFactory

Run phpspec and do not fear Red

To run phpspec for our Article factory, run this command:

$ vendor/bin/phpspec run spec/App/Factory/ArticleFactory.php -n
$
$ # with phpdbg installed
$ phpdbg -qrr vendor/bin/phpspec run spec/App/Factory/ArticleFactorySpec.php -n

And be happy with your first error message with red color.

Note: You can simply run all the phpspec tests by running vendor/bin/phpspec run -n

Create a minimal article factory class

# src/Factory/ArticleFactory.php

namespace App\Factory;

class ArticleFactory
{
}

Rerun phpspec and see a beautiful green color.

Specify it implements sylius factory interface

# spec/App/Factory/ArticleFactorySpec.php

function it_implements_sylius_factory_interface(): void
{

$this->shouldImplement(FactoryInterface::class);
}

Warning: Don’t forget to rerun phpspec on each step.

Solve this on your factory

24 Chapter 2. The Cookbook



Monofony

# src/Factory/ArticleFactory.php

namespace App\Factory;

use Sylius\Component\Resource\Factory\FactoryInterface;

class ArticleFactory implements FactoryInterface
{

/**
* {@inheritdoc}

*/
public function createNew()
{
}

}

Specify it creates articles

# spec/App/Factory/ArticleFactorySpec.php

// [...]

function its_creates_articles(): void
{

$article = $this->createNew();

$article->shouldImplement(Article::class);
}

Solve this on your factory

# src/Factory/ArticleFactory.php

namespace App\Factory;

use Sylius\Component\Resource\Factory\FactoryInterface;

class ArticleFactory implements FactoryInterface
{

/** @var string */
private $className;

public function __construct(string $className)
{

$this->className = $className;
}

/**
* {@inheritdoc}

*/
public function createNew(): Article
{

return new $this->className();

(continues on next page)

2.1. The Cookbook 25



Monofony

(continued from previous page)

}
}

Running this step will throw this exception:

exception [err:ArgumentCountError("Too few arguments to function
→˓App\Factory\ArticleFactory::__construct(), 0 passed and exactly 1 expected")] has
→˓been thrown.

To add arguments on constructor, go back to your factory spec and add these lines:

# spec/App/Factory/ArticleFactorySpec.php

namespace spec\App\Factory;

use App\Entity\Article;
use App\Factory\ArticleFactory;
use PhpSpec\ObjectBehavior;
use Sylius\Component\Resource\Factory\FactoryInterface;

class ArticleFactorySpec extends ObjectBehavior
{

function let()
{

$this->beConstructedWith(Article::class);
}

// [...]
}

Rerun phpspec and it should be solved.

Note: Here you pass a string, but you often need to pass objects on constructor. You just have to add them on
arguments of the let method and don’t forget to use typehints.

Here is an example with object arguments:

function let(FactoryInterface $factory)
{

$this->beConstructedWith($factory);
}

Specify it creates articles for an author

# spec/App/Factory/ArticleFactorySpec.php

// [...]

function its_creates_articles_for_an_author(CustomerInterface $author): void
{

$article = $this->createForAuthor($author);

(continues on next page)

26 Chapter 2. The Cookbook



Monofony

(continued from previous page)

$article->getAuthor()->shouldReturn($author);
}

Add this method on your factory

# src/Factory/ArticleFactory.php

// [...]

/**
* @param CustomerInterface $author

*
* @return Article

*/
public function createForAuthor(CustomerInterface $author): Article
{

$article = $this->createNew();
$article->setAuthor($author);

return $article;
}

And that’s all to specify this simple article factory.

• How to configure phpspec with code coverage

• How to disable phpspec code coverage

• How to design entities with phpspec

• How to design services with phpspec

Learn more

Note: To learn more, read the Phpspec documentation.

Danger: This is an outdated documentation please read the new Monofony documentation instead.

How to use Behat to design your features

Note: This section is based on the great Sylius documentation.

Behaviour driven development is an approach to software development process that provides software development
and management teams with shared tools and a shared process to collaborate on software development. The awesome
part of BDD is its ubiquitous language, which is used to describe the software in English-like sentences of domain
specific language.

The application’s behaviour is described by scenarios, and those scenarios are turned into automated test suites with
tools such as Behat.

2.1. The Cookbook 27

http://www.phpspec.net/en/stable/manual/introduction.html
https://docs.monofony.com
https://docs.sylius.com


Monofony

Sylius behaviours are fully covered with Behat scenarios. There are more than 1200 scenarios in the Sylius suite, and
if you want to understand some aspects of Sylius better, or are wondering how to configure something, we strongly
recommend reading them. They can be found in the features/ directory of the Sylius/Sylius repository.

We use FriendsOfBehat/SymfonyExtension to integrate Behat with Symfony.

Danger: This is an outdated documentation please read the new Monofony documentation instead.

Basic Usage

The best way of understanding how things work in detail is showing and analyzing examples, that is why this section
gathers all the knowledge from the previous chapters. Let’s assume that we are going to implement the functionality
of managing countries in our system. Now let us show you the flow.

Describing features

Let’s start with writing our feature file, which will contain answers to the most important questions: Why (ben-
efit, business value), who (actor using the feature) and what (the feature itself). It should also include scenarios,
which serve as examples of how things supposed to work. Let’s have a look at the features/addressing/
managing_countries/adding_country.feature file.

# features/addressing/managing_countries/adding_country.feature

@managing_countries
Feature: Adding a new country

In order to sell my goods to different countries
As an Administrator
I want to add a new country to the store

Background:
Given I am logged in as an administrator

@ui
Scenario: Adding country

When I want to add a new country
And I choose "United States"
And I add it
Then I should be notified that it has been successfully created
And the country "United States" should appear in the store

Pay attention to the form of these sentences. From the developer point of view they are hiding the details of the
feature’s implementation. Instead of describing “When I click on the select box And I choose United States from the
dropdown Then I should see the United States country in the table” - we are using sentences that are less connected
with the implementation, but more focused on the effects of our actions. A side effect of such approach is that it results
in steps being really generic, therefore if we want to add another way of testing this feature for instance in the domain
or api context, it will be extremely easy to apply. We just need to add a different tag (in this case “@domain”) and
of course implement the proper steps in the domain context of our system. To be more descriptive let’s imagine that
we want to check if a country is added properly in two ways. First we are checking if the adding works via frontend,
so we are implementing steps that are clicking, opening pages, filling fields on forms and similar, but also we want to
check this action regardlessly of the frontend, for that we need the domain, which allows us to perform actions only
on objects.

28 Chapter 2. The Cookbook

https://github.com/FriendsOfBehat/SymfonyExtension
https://docs.monofony.com


Monofony

Choosing a correct suite

After we are done with a feature file, we have to create a new suite for it. At the beginning we
have decided that it will be a frontend/user interface feature, that is why we are placing it in “con-
fig/suites/ui/addressing/managing_countries.yaml”.

# config/suites/ui/addressing/managing_countries.yaml

default:
suites:

ui_managing_countries:
contexts:

# This service is responsible for clearing database before each
→˓scenario,

# so that only data from the current and its background is available.
- App\Tests\Behat\Context\Hook\DoctrineORMContext

# The transformer contexts services are responsible for all the
→˓transformations of data in steps:

# For instance "And the country "France" should appear in the store"
→˓transforms "(the country "France")" to a proper Country object, which is from now
→˓on available in the scope of the step.

- App\Tests\Behat\Context\Transform\CountryContext
- App\Tests\Behat\Context\Transform\SharedStorageContext

# The setup contexts here are preparing the background, adding
→˓available countries and users or administrators.

# These contexts have steps like "I am logged in as an administrator"
→˓already implemented.

- App\Tests\Behat\Context\Setup\GeographicalContext
- App\Tests\Behat\Context\Setup\SecurityContext

# Lights, Camera, Action!
# Those contexts are essential here we are placing all action steps

→˓like "When I choose "France" and I add it Then I should ne notified that...".
- App\Tests\Behat\Context\Ui\Backend\ManagingCountriesContext
- App\Tests\Behat\Context\Ui\Backend\NotificationContext

filters:
tags: "@managing_countries && @ui"

A very important thing that is done here is the configuration of tags, from now on Behat will be searching for all your
features tagged with @managing_countries and your scenarios tagged with @ui.

We have mentioned with the generic steps we can easily switch our testing context to @domain. Have a look how it
looks:

# config/suites/domain/addressing/managing_countries.yaml

default:
suites:

domain_managing_countries:
contexts:

- App\Tests\Behat\Context\Hook\DoctrineORMContext

- App\Tests\Behat\Context\Transform\CountryContext
- App\Tests\Behat\Context\Transform\SharedStorageContext

(continues on next page)

2.1. The Cookbook 29



Monofony

(continued from previous page)

- App\Tests\Behat\Context\Setup\GeographicalContext
- App\Tests\Behat\Context\Setup\SecurityContext

# Domain step implementation.
- App\Tests\Behat\Context\Domain\Backend\ManagingCountriesContext

filters:
tags: "@managing_countries && @domain"

We are almost finished with the suite configuration.

Registering Pages

The page object approach allows us to hide all the detailed interaction with ui (html, javascript, css) inside.

We have three kinds of pages:

• Page - First layer of our pages it knows how to interact with DOM objects. It has a method
getUrl(array $urlParameters) where you can define a raw url to open it.

• SymfonyPage - This page extends the Page. It has a router injected so that the getUrl() method gener-
ates a url from the route name which it gets from the getRouteName() method.

• Base Crud Pages (IndexPage, CreatePage, UpdatePage) - These pages extend SymfonyPage and they are
specific to the Sylius resources. They have a resource name injected and therefore they know about the
route name.

There are two ways to manipulate UI - by using getDocument() or getElement('your_element'). First
method will return a DocumentElement which represents an html structure of the currently opened page, second
one is a bit more tricky because it uses the ->getDefinedElements(): array method and it will return a
NodeElement which represents only the restricted html structure.

Usage example of getElement('your_element') and getDefinedElements() methods.

final class CreatePage extends SymfonyPage implements CreatePageInterface
{

// This method returns a simple associative array, where the key is the name of
→˓your element and the value is its locator.

protected function getDefinedElements(): array
{

return array_merge(parent::getDefinedElements(): array, [
'provinces' => '#sylius_country_provinces',

]);
}

// By default it will assume that your locator is css.
// Example with xpath.
protected function getDefinedElements(): array
{

return array_merge(parent::getDefinedElements(): array, [
'provinces_css' => '.provinces',
'provinces_xpath' => ['xpath' => '//*[contains(@class, "provinces")]'], //

→˓ Now your value is an array where key is your locator type.
]);

}

// Like that you can easily manipulate your page elements.
public function addProvince(ProvinceInterface $province): void

(continues on next page)

30 Chapter 2. The Cookbook



Monofony

(continued from previous page)

{
$provinceSelectBox = $this->getElement('provinces');

$provinceSelectBox->selectOption($province->getName());
}

}

Let’s get back to our main example and analyze our scenario. We have steps like:

When I choose "France"
And I add it
Then I should be notified that it has been successfully created
And the country "France" should appear in the store

namespace App\Tests\Behat\Page\Backend\Country;

use App\Tests\Behat\Page\Backend\Crud\CreatePage as BaseCreatePage;

final class CreatePage extends BaseCreatePage implements CreatePageInterface
{

public function chooseName(string $name): void
{

$this->getDocument()->selectFieldOption('Name', $name);
}

public function create(): void
{

$this->getDocument()->pressButton('Create');
}

}

namespace App\Tests\Behat\Page\Backend\Country;

use App\Tests\Behat\Page\Backend\Crud\IndexPage as BaseIndexPage;

final class IndexPage extends BaseIndexPage implements IndexPageInterface
{

public function isSingleResourceOnPage(array $parameters): bool
{

try {
// Table accessor is a helper service which is responsible for all html

→˓table operations.
$rows = $this->tableAccessor->getRowsWithFields($this->getElement('table

→˓'), $parameters);

return 1 === count($rows);
} catch (ElementNotFoundException $exception) {

// Table accessor throws this exception when cannot find table element on
→˓page.

return false;
}

}
}

2.1. The Cookbook 31



Monofony

Warning: There is one small gap in this concept - PageObjects is not a concrete instance of the currently opened
page, they only mimic its behaviour (dummy pages). This gap will be more understandable on the below code
example.

// Of course this is only to illustrate this gap.

class HomePage
{

// In this context on home page sidebar you have for example weather information
→˓in selected countries.

public function readWeather()
{

return $this->getElement('sidebar')->getText();
}

protected function getDefinedElements(): array
{

return ['sidebar' => ['css' => '.sidebar']]
}

protected function getUrl()
{

return 'http://your_domain.com';
}

}

class LeagueIndexPage
{

// In this context you have for example football match results.
public function readMatchResults()
{

return $this->getElement('sidebar')->getText();
}

protected function getDefinedElements(): array
{

return ['sidebar' => ['css' => '.sidebar']]
}

protected function getUrl()
{

return 'http://your_domain.com/leagues/'
}

}

final class GapContext implements Context
{

private $homePage;
private $leagueIndexPage;

/**
* @Given I want to be on Homepage

*/
public function iWantToBeOnHomePage() // After this method call we will be on

→˓"http://your_domain.com".
{

(continues on next page)

32 Chapter 2. The Cookbook



Monofony

(continued from previous page)

$this->homePage->open(); //When we add @javascript tag we can actually see
→˓this thanks to selenium.

}

/**
* @Then I want to see the sidebar and get information about the weather in France

*/
public function iWantToReadSideBarOnHomePage($someInformation) // Still "http://

→˓your_domain.com".
{

$someInformation === $this->leagueIndexPage->readMatchResults() // This
→˓returns true, but wait a second we are on home page (dummy pages).

$someInformation === $this->homePage->readWeather() // This also returns true.
}

}

Registering contexts

As it was shown in the previous section we have registered a lot of contexts, so we will show you only some of the
steps implementation.

Given I want to add a new country
And I choose "United States"
And I add it
Then I should be notified that it has been successfully created
And the country "United States" should appear in the store

Let’s start with essential one ManagingCountriesContext

Ui contexts

namespace App\Tests\Behat\Context\Ui\Backend

use Behat\Behat\Context\Context;

final class ManagingCountriesContext implements Context
{

/** @var IndexPageInterface */
private $indexPage;

/** @var CreatePageInterface */
private $createPage;

/** @var UpdatePageInterface */
private $updatePage;

public function __construct(
IndexPageInterface $indexPage,
CreatePageInterface $createPage,
UpdatePageInterface $updatePage

) {
$this->indexPage = $indexPage;

(continues on next page)

2.1. The Cookbook 33



Monofony

(continued from previous page)

$this->createPage = $createPage;
$this->updatePage = $updatePage;

}

/**
* @Given I want to add a new country

*/
public function iWantToAddNewCountry(): void
{

$this->createPage->open(); // This method will send request.
}

/**
* @When I choose :countryName

*/
public function iChoose($countryName): void
{

$this->createPage->chooseName($countryName);
// Great benefit of using page objects is that we hide html manipulation

→˓behind a interfaces so we can inject different CreatePage which implements
→˓CreatePageInterface

// And have different html elements which allows for example chooseName(
→˓$countryName).

}

/**
* @When I add it

*/
public function iAddIt(): void
{

$this->createPage->create();
}

/**
* @Then /^the (country "([^"]+)") should appear in the store$/

*/
public function countryShouldAppearInTheStore(CountryInterface $country): void //

→˓This step use Country transformer to get Country object.
{

$this->indexPage->open();

//Webmozart assert library.
Assert::true(

$this->indexPage->isSingleResourceOnPage(['code' => $country->getCode()]),
sprintf('Country %s should exist but it does not', $country->getCode())

);
}

}

namespace App\Tests\Behat\Context\Ui\Backend

use Behat\Behat\Context\Context;

final class NotificationContext implements Context
{

/**
(continues on next page)

34 Chapter 2. The Cookbook



Monofony

(continued from previous page)

* This is a helper service which give access to proper notification elements.

*
* @var NotificationCheckerInterface

*/
private $notificationChecker;

/**
* @param NotificationCheckerInterface $notificationChecker

*/
public function __construct(NotificationCheckerInterface $notificationChecker)
{

$this->notificationChecker = $notificationChecker;
}

/**
* @Then I should be notified that it has been successfully created

*/
public function iShouldBeNotifiedItHasBeenSuccessfullyCreated(): void
{

$this->notificationChecker->checkNotification('has been successfully created.
→˓', NotificationType::success());

}
}

Transformer contexts

namespace App\Tests\Behat\Context\Transform;

use Behat\Behat\Context\Context;

final class CountryContext implements Context
{

/** @var CountryNameConverterInterface */
private $countryNameConverter;

/** @var RepositoryInterface */
private $countryRepository;

public function __construct(
CountryNameConverterInterface $countryNameConverter,
RepositoryInterface $countryRepository

) {
$this->countryNameConverter = $countryNameConverter;
$this->countryRepository = $countryRepository;

}

/**
* @Transform /^country "([^"]+)"$/

* @Transform /^"([^"]+)" country$/

*/
public function getCountryByName(string $countryName): Country // Thanks to this

→˓method we got in our ManagingCountries an Country object.
{

$countryCode = $this->countryNameConverter->convertToCode($countryName);

(continues on next page)

2.1. The Cookbook 35



Monofony

(continued from previous page)

$country = $this->countryRepository->findOneBy(['code' => $countryCode]);

Assert::notNull(
$country,
'Country with name %s does not exist'

);

return $country;
}

}

namespace App\Tests\Behat\Context\Ui\Backend;

use App\Tests\Behat\Page\Backend\Country\UpdatePageInterface;
use Behat\Behat\Context\Context;

final class ManagingCountriesContext implements Context
{

/** @var UpdatePageInterface */
private $updatePage;

public function __construct(UpdatePageInterface $updatePage)
{

$this->updatePage = $updatePage;
}

/**
* @Given /^I want to create a new province in (country "[^"]+")$/

*/
public function iWantToCreateANewProvinceInCountry(CountryInterface $country)
{

$this->updatePage->open(['id' => $country->getId()]);

$this->updatePage->clickAddProvinceButton();
}

}

namespace App\Tests\Behat\Context\Transform;

use Behat\Behat\Context\Context;

final class ShippingMethodContext implements Context
{

/** @var ShippingMethodRepositoryInterface */
private $shippingMethodRepository;

public function __construct(ShippingMethodRepositoryInterface
→˓$shippingMethodRepository)

{
$this->shippingMethodRepository = $shippingMethodRepository;

}

/**
* @Transform :shippingMethod

*/
public function getShippingMethodByName($shippingMethodName)

(continues on next page)

36 Chapter 2. The Cookbook



Monofony

(continued from previous page)

{
$shippingMethod = $this->shippingMethodRepository->findOneByName(

→˓$shippingMethodName);
if (null === $shippingMethod) {

throw new \Exception('Shipping method with name "'.$shippingMethodName.'"
→˓does not exist');

}

return $shippingMethod;
}

}

namespace App\Tests\Behat\Context\Ui\Admin;

use App\Tests\Behat\Page\Admin\ShippingMethod\UpdatePageInterface;
use Behat\Behat\Context\Context;

final class ShippingMethodContext implements Context
{

/** @var UpdatePageInterface */
private $updatePage;

public function __construct(UpdatePageInterface $updatePage)
{

$this->updatePage = $updatePage;
}

/**
* @Given I want to modify a shipping method :shippingMethod

*/
public function iWantToModifyAShippingMethod(ShippingMethodInterface

→˓$shippingMethod)
{

$this->updatePage->open(['id' => $shippingMethod->getId()]);
}

}

Warning: Contexts should have single responsibility and this segregation (Setup, Transformer, Ui, etc. . . ) is not
accidental. We shouldn’t create objects in transformer contexts.

Setup contexts

For setup context we need different scenario with more background steps and all preparing scene steps. Editing
scenario will be great for this example:

Scenario:

Given the store has disabled country "France"
And I want to edit this country
When I enable it
And I save my changes
Then I should be notified that it has been successfully edited
And this country should be enabled

2.1. The Cookbook 37



Monofony

namespace App\Tests\Behat\Context\Setup;

use Behat\Behat\Context\Context;

final class GeographicalContext implements Context
{

/** @var SharedStorageInterface */
private $sharedStorage;

/** @var FactoryInterface */
private $countryFactory;

/** @var RepositoryInterface */
private $countryRepository;

/** @var CountryNameConverterInterface */
private $countryNameConverter;

public function __construct(
SharedStorageInterface $sharedStorage,
FactoryInterface $countryFactory,
RepositoryInterface $countryRepository,
CountryNameConverterInterface $countryNameConverter

) {
$this->sharedStorage = $sharedStorage;
$this->countryFactory = $countryFactory;
$this->countryRepository = $countryRepository;
$this->countryNameConverter = $countryNameConverter;

}

/**
* @Given /^the store has disabled country "([^"]*)"$/

*/
public function theStoreHasDisabledCountry($countryName) // This method save

→˓country in data base.
{

$country = $this->createCountryNamed(trim($countryName));
$country->disable();

$this->sharedStorage->set('country', $country);
// Shared storage is an helper service for transferring objects between steps.
// There is also SharedStorageContext which use this helper service to

→˓transform sentences like "(this country), (it), (its), (theirs)" into Country
→˓Object.

$this->countryRepository->add($country);
}

private function createCountryNamed(string $name): CountryInterface
{

/** @var CountryInterface $country */
$country = $this->countryFactory->createNew();
$country->setCode($this->countryNameConverter->convertToCode($name));

return $country;
}

}

38 Chapter 2. The Cookbook



Monofony

Danger: This is an outdated documentation please read the new Monofony documentation instead.

How to add a new context?

Thanks to symfony autowiring, most of your contexts are ready to use.

But if you need to manually route an argument, it is needed to add a service in config/services_test.yaml
file.

App\Tests\Behat\Context\CONTEXT_CATEGORY\CONTEXT_NAME:
arguments:

$specificArgument: App\SpecificArgument

Then you can use it in your suite configuration:

default:
suites:

SUITE_NAME:
contexts:

- 'App\Tests\Behat\Context\CONTEXT_CATEGORY\CONTEXT_NAME'
filters:

tags: "@SUITE_TAG"

Note: The context categories are usually one of cli, hook, setup, transform, ui.

Danger: This is an outdated documentation please read the new Monofony documentation instead.

How to add a new page object?

Sylius uses a solution inspired by SensioLabs/PageObjectExtension, which provides an infrastructure to
create pages that encapsulates all the user interface manipulation in page objects.

To create a new page object it is needed to add a service.

The simplest Symfony-based page looks like:

use FriendsOfBehat\PageObjectExtension\Page\SymfonyPage;

class LoginPage extends SymfonyPage
{

public function getRouteName(): string
{

return 'app_frontend_security_login';
}

}

Note: There are some boilerplates for common pages, which you may use. The
available parents are FriendsOfBehat\PageObjectExtension\Page\Page and

2.1. The Cookbook 39

https://docs.monofony.com
https://docs.monofony.com


Monofony

FriendsOfBehat\PageObjectExtension\Page\SymfonyPage. It is not required for a page to
extend any class as pages are POPOs (Plain Old PHP Objects).

Danger: This is an outdated documentation please read the new Monofony documentation instead.

How to define a new suite?

To define a new suite it is needed to create a suite configuration file in a one of cli/ui directory inside config/
suites. Then register that file in config/suites.yaml.

Danger: This is an outdated documentation please read the new Monofony documentation instead.

How to use transformers?

Behat provides many awesome features, and one of them is definitely transformers. They can be used to transform
(usually widely used) parts of steps and return some values from them, to prevent unnecessary duplication in many
steps’ definitions.

Basic transformer

Example is always the best way to clarify, so let’s look at this:

/**
* @Transform /^"([^"]+)" shipping method$/

* @Transform /^shipping method "([^"]+)"$/

* @Transform :shippingMethod

*/
public function getShippingMethodByName($shippingMethodName)
{

$shippingMethod = $this->shippingMethodRepository->findOneByName(
→˓$shippingMethodName);

Assert::notNull(
$shippingMethod,
sprintf('Shipping method with name "%s" does not exist', $shippingMethodName)

);

return $shippingMethod;
}

This transformer is used to return ShippingMethod object from proper repository using it’s name. It also throws
exception if such a method does not exist. It can be used in plenty of steps, that have shipping method name in it.

Note: In the example above a Webmozart assertion library was used, to assert a value and throw an exception if
needed.

But how to use it? It is as simple as that:

40 Chapter 2. The Cookbook

https://docs.monofony.com
https://docs.monofony.com
https://github.com/webmozart/assert


Monofony

/**
* @Given /^(shipping method "[^"]+") belongs to ("[^"]+" tax category)$/

*/
public function shippingMethodBelongsToTaxCategory(

ShippingMethodInterface $shippingMethod,
TaxCategoryInterface $taxCategory

) {
// some logic here

}

If part of step matches transformer definition, it should be surrounded by parenthesis to be handled as whole expression.
That’s it! As it is shown in the example, many transformers can be used in the same step definition. Is it all? No! The
following example will also work like charm:

/**
* @When I delete shipping method :shippingMethod

* @When I try to delete shipping method :shippingMethod

*/
public function iDeleteShippingMethod(ShippingMethodInterface $shippingMethod)
{

// some logic here
}

It is worth to mention, that in such a case, transformer would be matched depending on a name after ‘:’ sign. So many
transformes could be used when using this signature also. This style gives an opportunity to write simple steps with
transformers, without any regex, which would boost context readability.

Note: Transformer definition does not have to be implemented in the same context, where it is used. It allows to share
them between many different contexts.

Transformers implemented in Sylius

Specified

There are plenty of transformers already implemented in Sylius. Most of them return specific resources from their
repository, for example:

• tax category "Fruits" -> find tax category in their repository with name “Fruits”

• "Chinese banana" variant of product "Banana" -> find variant of specific product

etc. You’re free to use them in your own behat scenarios.

Note: All transformers definitions are currently kept in App\Tests\Behat\Context\Transform namespace.

Warning: Remember to include contexts with transformers in custom suite to be able to use them!

2.1. The Cookbook 41



Monofony

Generic

Moreover, there are also some more generic transformers, that could be useful in many different cases. They are now
placed in two contexts: LexicalContext and SharedStorageContext. Why are they so awesome? Let’s
describe them one by one:

LexicalContext

• @Transform /^"(?:C|£|\$)((?:\d+\.)?\d+)"$/ -> tricky transformer used to parse price string
with currency into integer (used to represent price in Sylius). It is used in steps like this promotion gives
"C30.00" fixed discount to every order

• @Transform /^"((?:\d+\.)?\d+)%"$/ -> similar one, transforming percentage string into float (ex-
ample: this promotion gives "10%" percentage discount to every order)

SharedStorageContext

Note: SharedStorage is kind of container used to keep objects, which can be shared between steps. It can be
used, for example, to keep newly created promotion, to use its name in checking existence step.

• @Transform /^(it|its|theirs)$/ -> amazingly useful transformer, that returns last resource saved
in SharedStorage. It allows to simplify many steps used after creation/update (and so on) actions. Ex-
ample: instead of writing When I create "Wade Wilson" customer/Then customer "Wade
Wilson" should be registered just write When I create "Wade Wilson" customer/
Then it should be registered

• @Transform /^(?:this|that|the) ([^"]+)$/ -> similar to previous one, but returns resource
saved with specific key, for example this promotion will return resource saved with promotion key
in SharedStorage

Danger: This is an outdated documentation please read the new Monofony documentation instead.

How to change Behat application base url

By default Behat uses https://localhost:8080/ as your application base url. If your one is different, you
need to create behat.yml files that will overwrite it with your custom url:

# behat.yml

imports: ["behat.yml.dist"]

default:
extensions:

Behat\MinkExtension:
base_url: http://my.custom.url

• Basic Usage

• How to add a new context?

• How to add a new page object?

• How to define a new suite?

• How to use transformers?

42 Chapter 2. The Cookbook

https://docs.monofony.com


Monofony

• How to change Behat application base url

Learn more

Note: To learn more, read the Behat documentation.

• How to use Phpspec to design your code

• How to use Behat to design your features

2.1.4 Dashboard

Danger: This is an outdated documentation please read the new Monofony documentation instead.

How to create your own statistics

The mechanism behind the displaying of statistics relies on tagged services which are supported since Symfony 4.3

Create your own statistic

Add a new class to /src/Dashboard/Statistic and make sure it implement the
App\Dashboard\Statistics\StatisticInterface. This way it will be automatically tagged with
app.dashboard_statistic which is used to fetch all existing statistics.

It also enforces you to implement a function called generate() which need to return a string.

Note: The response of the generate function will be displayed as is in the dashboard. Which means you can return
anything, as long as it is a string. Eg. in the CustomerStatistic it is an HTML block which shows you the amount of
registered customers.

Order your statistics

Since Symfony 4.4 it is possible to sort your services with a static function called getDefaultPriority. Here
you need to return an integer to set the weight of the service. Statistics with a higher priority will be displayed first.
This is why we chose to work with negative values. (-1 for the first element, -2 for the second,. . . ). But feel free to use
your own sequence when adding more statistics.

public static function getDefaultPriority(): int
{

return -1;
}

Warning: If you change the priority it is necessary to clear your cache. Otherwise you won’t see the difference.

2.1. The Cookbook 43

http://behat.org/en/latest/guides.html
https://docs.monofony.com


Monofony

Add custom logic to your statistic

Because all statistics are services it’s perfectly possible to do anything with them as long as the generate function
returns a string. So you can inject any service you want trough Dependency Injection to build your statistic.

Danger: This is an outdated documentation please read the new Monofony documentation instead.

Basic example

This is a basic example. It fetches and renders the amount of registered customers.

namespace App\Dashboard\Statistics;

use App\Repository\CustomerRepository;
use Monofony\Component\Admin\Dashboard\Statistics\StatisticInterface;
use Symfony\Component\Templating\EngineInterface;

class CustomerStatistic implements StatisticInterface
{

/** @var CustomerRepository */
private $customerRepository;

/** @var EngineInterface */
private $engine;

public function __construct(CustomerRepository $customerRepository,
→˓EngineInterface $engine)

{
$this->customerRepository = $customerRepository;
$this->engine = $engine;

}

public function generate(): string
{

$amountCustomers = $this->customerRepository->countCustomers();

return $this->engine->render('backend/dashboard/statistics/_amount_of_
→˓customers.html.twig', [

'amountOfCustomers' => $amountCustomers,
]);

}

public static function getDefaultPriority(): int
{

return -1;
}

}

• How to create your own statistics

• Basic example

44 Chapter 2. The Cookbook

https://docs.monofony.com


CHAPTER 3

Deployment

The Deployment guide helps to deploy the website on servers.

Danger: This is an outdated documentation please read the new Monofony documentation instead.

3.1 Deployment

3.1.1 Authorized keys API

Adding ssh authorized keys for server on your local computer

$ cat ~/.ssh/id_rsa.pub | ssh mobizel@XXX.XXX.XX.XX "cat - >> ~/.ssh/authorized_keys"

and enter the correct password for username “mobizel” on server

3.1.2 Deploy the staging environment

$ bundle exec "cap staging deploy"

3.1.3 Deploy the production environment

$ bundle exec "cap production deploy"

• Deployment

45

https://docs.monofony.com


Monofony

46 Chapter 3. Deployment



Index

A
AdminUser, 6
Architecture, 4

C
Customer and AppUser, 7

F
Fixtures, 5

47


	The Book
	The Book

	The Cookbook
	The Cookbook

	Deployment
	Deployment

	Index

